【面试高频题】热门数据结构面试题合集(堆)

堆一直是面试数据结构中的重中之重,今天通过 555 道与堆相关的题目来进行学习。


373. 查找和最小的K对数字

给定两个以升序排列的整数数组 nums1nums2 , 以及一个整数 k 。

定义一对值 (u,v)(u,v)(u,v),其中第一个元素来自 nums1,第二个元素来自 nums2

请找到和最小的 k 个数对 (u1,v1), (u2,v2) ... (uk,vk)(u_1,v_1),  (u_2,v_2)  ...  (u_k,v_k)(u1​,v1​), (u2​,v2​) ... (uk​,vk​) 。 

示例 1:

输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3

输出: [1,2],[1,4],[1,6]

解释: 返回序列中的前 3 对数:
     [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
复制代码

提示:

  • 1<=nums1.length,nums2.length<=1041 <= nums1.length, nums2.length <= 10^41<=nums1.length,nums2.length<=104
  • −109<=nums1[i],nums2[i]<=109-10^9 <= nums1[i], nums2[i] <= 10^9−109<=nums1[i],nums2[i]<=109
  • nums1,nums2均为升序排列nums1, nums2 均为升序排列nums1,nums2均为升序排列
  • 1<=k<=10001 <= k <= 10001<=k<=1000

基本分析

这道题和 (题解) 786. 第 K 个最小的素数分数 几乎是一模一样,先做哪一道都是一样的,难度上没有区别 🤣

最常规的做法是使用「多路归并」,还不熟悉「多路归并」的同学,建议先学习前置🧀:多路归并入门,里面讲述了如何从「朴素优先队列」往「多路归并」进行转换。

多路归并

令 nums1nums1nums1 的长度为 nnn,nums2nums2nums2 的长度为 mmm,所有的点对数量为 n∗mn * mn∗m。

其中每个 nums1[i]nums1[i]nums1[i] 参与所组成的点序列为:

[(nums1[0], nums2[0]), (nums1[0], nums2[1]), ..., (nums1[0], nums2[m - 1])]\\ [(nums1[1], nums2[0]), (nums1[1], nums2[1]), ..., (nums1[1], nums2[m - 1])]\\ ...\\ [(nums1[n - 1], nums2[0]), (nums1[n - 1], nums2[1]), ..., (nums1[n - 1], nums2[m - 1])]\\

由于 nums1nums1nums1 和 nums2nums2nums2 均已按升序排序,因此每个 nums1[i]nums1[i]nums1[i] 参与构成的点序列也为升序排序,这引导我们使用「多路归并」来进行求解。

具体的,起始我们将这 nnn 个序列的首位元素(点对)以二元组 (i,j)(i, j)(i,j) 放入优先队列(小根堆),其中 iii 为该点对中 nums1[i]nums1[i]nums1[i] 的下标,jjj 为该点对中 nums2[j]nums2[j]nums2[j] 的下标,这步操作的复杂度为 O(nlog⁡n)O(n\log{n})O(nlogn)。这里也可以得出一个小优化是:我们始终确保 nums1nums1nums1 为两数组中长度较少的那个,然后通过标识位来记录是否发生过交换,确保答案的点顺序的正确性。

每次从优先队列(堆)中取出堆顶元素(含义为当前未被加入到答案的所有点对中的最小值),加入答案,并将该点对所在序列的下一位(如果有)加入优先队列中。

举个 🌰,首次取出的二元组为 (0,0)(0, 0)(0,0),即点对 (nums1[0],nums2[0])(nums1[0], nums2[0])(nums1[0],nums2[0]),取完后将序列的下一位点对 (nums1[0],nums2[1])(nums1[0], nums2[1])(nums1[0],nums2[1]) 以二元组 (0,1)(0, 1)(0,1) 形式放入优先队列。

可通过「反证法」证明,每次这样的「取当前,放入下一位」的操作,可以确保当前未被加入答案的所有点对的最小值必然在优先队列(堆)中,即前 kkk 个出堆的元素必然是所有点对的前 kkk 小的值。

Java 代码:

class Solution {
    boolean flag = true;
    public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
        List<List<Integer>> ans = new ArrayList<>();
        int n = nums1.length, m = nums2.length;
        if (n > m && !(flag = false)) return kSmallestPairs(nums2, nums1, k);
        PriorityQueue<int[]> q = new PriorityQueue<>((a,b)->(nums1[a[0]]+nums2[a[1]])-(nums1[b[0]]+nums2[b[1]]));
        for (int i = 0; i < Math.min(n, k); i++) q.add(new int[]{i, 0});
        while (ans.size() < k && !q.isEmpty()) {
            int[] poll = q.poll();
            int a = poll[0], b = poll[1];
            ans.add(new ArrayList<>(){
  {
                add(flag ? nums1[a] : nums2[b]);
                add(flag ? nums2[b] : nums1[a]);
            }});
            if (b + 1 < m) q.add(new int[]{a, b + 1});
        }
        return ans;
    }
}
复制代码
  • 时间复杂度:令 MMM 为 nnn、mmm 和 kkk 三者中的最小值,复杂度为 O(M+k)×log⁡M)O(M + k) \times \log{M})O(M+k)×logM)
  • 空间复杂度:O(M)O(M)O(M)

二分

我们还能够使用多次「二分」来做。

假设我们将所有「数对和」按照升序排序,两端的值分别为 l=nums1[0]+nums2[0]l = nums1[0] + nums2[0]l=nums1[0]+nums2[0] 和 r=nums1[n−1]+nums2[m−1]r = nums1[n - 1] + nums2[m - 1]r=nums1[n−1]+nums2[m−1]。

因此我们可以在值域 [l,r][l, r][l,r] 上进行二分,找到第一个满足「点对和小于等于 xxx 的ÿ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值