给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
1.回溯法。
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
List<Integer> subList = new ArrayList<>();
subset(nums,list,subList,0);
return list;
}
public void subset(int[] nums,List<List<Integer>> list,List<Integer> subList,int begin){
list.add(new ArrayList<>(subList));//没有显示递归结束条件,当前遍历到的组合直接加入list
for(int i = begin;i < nums.length;i++){
subList.add(nums[i]);
subset(nums,list,subList,i+1);//加入下一个位置上的数字
subList.remove(subList.size() - 1);
}
}
}
2.一种动态规划的思想来自评论@MonYL:包含当前数的子集组合=上一个数的获得的每一个子集组合+当前数。所有子集=遍历的每一个数的获得的子集组合的合集。
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res=new ArrayList<>();
List<Integer> initSub=new ArrayList<>();
res.add(initSub);//先加入一个空集
for (int i = 0; i < nums.length; i++) {//遍历数组中的每个数字
int num=nums[i];
int time=res.size();//遍历上一个数字后的子列表数量
for (int j = 0; j < time; j++) {//在每一个之前的子列表中加一个当前遍历到的数字
List<Integer> list=res.get(j);
List<Integer> sub=new ArrayList<>(list);//创建一个新的子集
sub.add(num);//加入当前遍历到的数字
res.add(sub);//将新的子集加入到list中
}
}
return res;
}
}
题源:力扣