text mining week5学习笔记

本文介绍了文本分类中的判别模型,包括逻辑回归、knn和SVM,强调了特征选择和训练集获取的重要性。此外,还讨论了意见挖掘和情感分析,涉及情感分类的特征设计与有序逻辑回归的应用。
摘要由CSDN通过智能技术生成

一、 文本分类
1. 判别分类器
(1) logestic回归
这里写图片描述
这里写图片描述

(2) knn分类
这里写图片描述
如要求正中间那个四方格属于哪个分类,则先要确定k的值,若设k=1,则归为距它最近的一个类。若k=4,如图圈中会看到玫红方格所占概率3/4,点方格为1/4,则归为玫红方格的类中.

(3) SVM
这里写图片描述
尽力使分开的两个类别有最大的间隔,这样才使得分类具有更高的可信度,而且对于未知的新样本才有很好的分类预测能力。
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值