正方形 square.cpp

34 篇文章 0 订阅
29 篇文章 0 订阅

【一句话题意】有t个询问,求 Π i = 1 n Π j = 1 n i ∗ j g c d ( i , j ) 2 \Pi^n_{i=1}\Pi^n_{j=1}\frac{i*j}{gcd(i,j)^2} Πi=1nΠj=1ngcd(i,j)2ij
t<=1e6,n<=1e7 时限比1s长一点。

【分析】
原题不如概括后简洁和清晰,但概括和抽象也是图论和数论所要强调的能力。这次考试犯了数论题的大忌:死盯着题目想结论,而不是概括出式子进行观察和思考

明显的离线算法,所以问题在于预处理的复杂度上,只能比线性多一点。
将式子展开可以得到 n ! 2 n Π i = 1 n Π j = 1 n g c d ( i , j ) \frac{n!^{2n}}{\Pi^n_{i=1}\Pi^n_{j=1}gcd(i,j)} Πi=1nΠj=1ngcd(i,j)n!2n
对于分子可以O(n)预处理,关键在于gcd(i,j)的计算。首先考虑的是利用已有结果推得未知结果。

如果我已经知道了f(n-1)。 f ( n ) = f ( n − 1 ) + n ! ∗ n n Π i = 1 n g c d ( i , n ) f(n)=f(n-1)+\frac{n!*n^n}{\Pi^n_{i=1}gcd(i,n)} f(n)=f(n1)+Πi=1ngcd(i,n)n!nn显然gcd(i,n)一定是n的约数,考虑到n的约数个数是log级的,所以我们枚举gcd的大小。当gcd大小为x时,显然有 g c d ( i x , n x ) = = 1 gcd(\frac{i}{x},\frac{n}{x})==1 gcd(xi,xn)==1,所以gcd为x对答案贡献就是x乘上与 n x \frac{n}{x} xn互质的数的个数。用公式书写就是 x ∗ φ ( n x ) x*\varphi(\frac{n}{x}) xφ(xn)。考虑到 φ ( n x ) \varphi(\frac{n}{x}) φ(xn)可以O(n)预处理,所以复杂度就是O(nlogn)。

还是过不了,怎么办?我们单独考虑每个素数对答案的贡献,对于一个素数x,它在k*x处会对答案有x(2k-1)的贡献,求一遍前缀积即为答案。
【code】

#pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int mod=19260817;
const int maxn=1e7+1000;
const int T=1e7;
int sum[maxn],mul[maxn];
bool flag[maxn];
int n,t;
int pw(int x,int p){
	int ret=1;
	while(p>0){
		if(p&1) ret=1ll*ret*x%mod;
		x=1ll*x*x%mod,p>>=1;
	}
	return ret;
}
void pre(){
	flag[1]=true;
	for(int i=0;i<=T;i++) sum[i]=1;
	for(int i=2;i<=T;i++)
		if(flag[i]==false){
			long long t=i;
			for(;t<=T;t*=i){//p^k
				for(int tmp=t,num=i;tmp<=T;tmp+=t,num=1ll*num*i%mod*i%mod)//num的奇形怪状处理是为了避免p^k被,p,p^2……处理多次
					sum[tmp]=1ll*sum[tmp]*num%mod;
			}
			for(int k=i;k<=T;k+=i) flag[k]=true;
		}
	for(int i=1;i<=T;i++) sum[i]=1ll*sum[i-1]*sum[i]%mod;
	for(int i=1;i<=T;i++) sum[i]=1ll*sum[i]*sum[i]%mod;
	mul[0]=1;for(int i=1;i<=T;i++) mul[i]=1ll*mul[i-1]*i%mod;
}
inline void read(int &x){
	x=0;char tmp=getchar();
	while(tmp<'0'||tmp>'9') tmp=getchar();
	while(tmp>='0'&&tmp<='9') x=(x<<1)+(x<<3)+tmp-'0',tmp=getchar();
}
int main(){
	pre();
	cin>>t;
	while(t--){
		read(n);
		printf("%lld\n",1ll*pw(mul[n],2*n)*pw(sum[n],mod-2)%mod);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值