【简要题意】有n个点和m条边。选出其中的某些边构成一个新的图(不一定联通),要求新图中每个连通块中至多有一个环。求新图的边权最大和。
【分析】贪心,依旧是一道kruskal类似的题,不同只是要记录当前集合中是否有环。
【code】
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=310;
struct Edge{
int u,v;
int val;
}edge[maxn*maxn];
int f[maxn],flag[maxn];
int n,m;int ans;
inline void read(int &x){
x=0;char tmp=getchar();int fl=1;
while(tmp<'0'||tmp>'9'){if(tmp=='-') fl=-fl;tmp=getchar();}
while(tmp>='0'&&tmp<='9') x=(x<<1)+(x<<3)+tmp-'0',tmp=getchar();
x=x*fl;
}
bool cmp(Edge x,Edge y){return x.val>y.val;}
int find(int x){
if(f[x]!=x) f[x]=find(f[x]);
return f[x];
}
int main(){
cin>>n>>m;
for(int i=0;i<m;i++) read(edge[i].u),read(edge[i].v),read(edge[i].val);
sort(edge,edge+m,cmp);
for(int i=0;i<n;i++) f[i]=i;
for(int i=0;i<m;i++){
int x=find(edge[i].u),y=find(edge[i].v);
if((x==y&&flag[x])||(x!=y&&flag[x]&&flag[y]))continue;
if(x!=y) flag[y]=flag[x]||flag[y],f[x]=y;
else flag[x]=1;
ans+=edge[i].val;
}
cout<<ans<<endl;
return 0;
}