家园重建

33 篇文章 0 订阅
4 篇文章 0 订阅

【简要题意】有n个点和m条边。选出其中的某些边构成一个新的图(不一定联通),要求新图中每个连通块中至多有一个环。求新图的边权最大和。

【分析】贪心,依旧是一道kruskal类似的题,不同只是要记录当前集合中是否有环。

【code】

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=310;
struct Edge{
	int u,v;
	int val;
}edge[maxn*maxn];
int f[maxn],flag[maxn];
int n,m;int ans;
inline void read(int &x){
	x=0;char tmp=getchar();int fl=1;
	while(tmp<'0'||tmp>'9'){if(tmp=='-') fl=-fl;tmp=getchar();}
	while(tmp>='0'&&tmp<='9') x=(x<<1)+(x<<3)+tmp-'0',tmp=getchar();
	x=x*fl;
}
bool cmp(Edge x,Edge y){return x.val>y.val;}
int find(int x){
	if(f[x]!=x) f[x]=find(f[x]);
	return f[x];
}
int main(){
	cin>>n>>m;
	for(int i=0;i<m;i++) read(edge[i].u),read(edge[i].v),read(edge[i].val);
	sort(edge,edge+m,cmp);
	for(int i=0;i<n;i++) f[i]=i;
	for(int i=0;i<m;i++){
		int x=find(edge[i].u),y=find(edge[i].v);
		if((x==y&&flag[x])||(x!=y&&flag[x]&&flag[y]))continue;
		if(x!=y) flag[y]=flag[x]||flag[y],f[x]=y;
		else flag[x]=1;	
		ans+=edge[i].val;
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值