110 深入解析QueryFusionRetriever类:多重检索器融合技术 (init方法) llamaindex.core.retrievers

深入解析QueryFusionRetriever类:多重检索器融合技术

在现代信息检索系统中,单一检索器的性能往往难以满足复杂查询的需求。为了提高检索的准确性和全面性,多重检索器融合技术应运而生。本文将详细解析一个名为QueryFusionRetriever的类,该类通过融合多个检索器,生成并执行多个查询,从而提升检索效果。

前置知识

在深入代码之前,我们需要了解以下几个关键概念:

  1. 检索器(Retriever):负责从数据源中检索相关文档或信息的组件。
  2. 语言模型(LLM,Language Model):用于生成或理解自然语言的模型。
  3. 异步处理(Async Processing):允许程序在等待某些操作完成时继续执行其他任务,提高效率。
  4. 回调管理器(Callback Manager):用于管理和调度回调函数的组件。

代码解析

类定义与初始化

class QueryFusionRetriever(BaseRetriever):
    def __init__(
        self,
        retrievers: List[BaseRetriever],
        llm: Optional[LLMType] = None,
        query_gen_prompt: Optional[str] = None,
        mode: FUSION_MODES = FUSION_MODES.SIMPLE,
        similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K,
        num_queries: int = 4,
        use_async: bool = True,
        verbose: bool = False,
        callback_manager: Optional[CallbackManager] = None,
        objects: Optional[List[IndexNode]] = None,
        object_map: Optional[dict] = None,
        retriever_weights: Optional[List[float]] = None,
    ) -> None:
        self.num_queries = num_queries
        self.query_gen_prompt = query_gen_prompt or QUERY_GEN_PROMPT
        self.similarity_top_k = similarity_top_k
        self.mode = mode
        self.use_async = use_async

        self._retrievers = retrievers
        if retriever_weights is None:
            self._retriever_weights = [1.0 / len(retrievers)] * len(retrievers)
        else:
            # Sum of retriever_weights must be 1
            total_weight = sum(retriever_weights)
            self._retriever_weights = [w / total_weight for w in retriever_weights]
        self._llm = (
            resolve_llm(llm, callback_manager=callback_manager) if llm else Settings.llm
        )
        super().__init__(
            callback_manager=callback_manager,
            object_map=object_map,
            objects=objects,
            verbose=verbose,
        )

参数解析

  • retrievers: 一个包含多个BaseRetriever实例的列表,表示要融合的检索器。
  • llm: 可选参数,用于指定语言模型。如果不提供,将使用默认设置。
  • query_gen_prompt: 可选参数,用于生成查询的提示语。
  • mode: 融合模式,默认为FUSION_MODES.SIMPLE
  • similarity_top_k: 相似度最高的K个结果,默认为DEFAULT_SIMILARITY_TOP_K
  • num_queries: 生成的查询数量,默认为4。
  • use_async: 是否使用异步处理,默认为True
  • verbose: 是否输出详细信息,默认为False
  • callback_manager: 可选参数,用于管理和调度回调函数。
  • objects: 可选参数,包含索引节点的列表。
  • object_map: 可选参数,对象映射字典。
  • retriever_weights: 可选参数,检索器的权重列表。

初始化过程

  1. 设置基本属性:

    self.num_queries = num_queries
    self.query_gen_prompt = query_gen_prompt or QUERY_GEN_PROMPT
    self.similarity_top_k = similarity_top_k
    self.mode = mode
    self.use_async = use_async
    
  2. 初始化检索器和权重:

    self._retrievers = retrievers
    if retriever_weights is None:
        self._retriever_weights = [1.0 / len(retrievers)] * len(retrievers)
    else:
        total_weight = sum(retriever_weights)
        self._retriever_weights = [w / total_weight for w in retriever_weights]
    
  3. 初始化语言模型:

    self._llm = (
        resolve_llm(llm, callback_manager=callback_manager) if llm else Settings.llm
    )
    
  4. 调用父类初始化:

    super().__init__(
        callback_manager=callback_manager,
        object_map=object_map,
        objects=objects,
        verbose=verbose,
    )
    

实际应用示例

假设我们有两个检索器retriever1retriever2,并且我们希望使用QueryFusionRetriever来融合它们:

from some_module import BaseRetriever, QueryFusionRetriever, LLMType, CallbackManager

# 假设retriever1和retriever2已经初始化
retriever1 = BaseRetriever(...)
retriever2 = BaseRetriever(...)

# 初始化QueryFusionRetriever
fusion_retriever = QueryFusionRetriever(
    retrievers=[retriever1, retriever2],
    llm=LLMType(...),
    query_gen_prompt="Generate queries based on the following context:",
    mode=FUSION_MODES.SIMPLE,
    similarity_top_k=5,
    num_queries=4,
    use_async=True,
    verbose=True,
    callback_manager=CallbackManager(...),
)

# 使用fusion_retriever进行查询
results = fusion_retriever.retrieve("example query")
print(results)

总结

通过本文的详细解析,我们深入理解了QueryFusionRetriever类的实现原理和应用方法。该类通过融合多个检索器,生成并执行多个查询,从而显著提升检索的准确性和全面性。希望本文能为您的编程实践提供有益的参考和帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值