深入解析QueryFusionRetriever类:多重检索器融合技术
在现代信息检索系统中,单一检索器的性能往往难以满足复杂查询的需求。为了提高检索的准确性和全面性,多重检索器融合技术应运而生。本文将详细解析一个名为QueryFusionRetriever
的类,该类通过融合多个检索器,生成并执行多个查询,从而提升检索效果。
前置知识
在深入代码之前,我们需要了解以下几个关键概念:
- 检索器(Retriever):负责从数据源中检索相关文档或信息的组件。
- 语言模型(LLM,Language Model):用于生成或理解自然语言的模型。
- 异步处理(Async Processing):允许程序在等待某些操作完成时继续执行其他任务,提高效率。
- 回调管理器(Callback Manager):用于管理和调度回调函数的组件。
代码解析
类定义与初始化
class QueryFusionRetriever(BaseRetriever):
def __init__(
self,
retrievers: List[BaseRetriever],
llm: Optional[LLMType] = None,
query_gen_prompt: Optional[str] = None,
mode: FUSION_MODES = FUSION_MODES.SIMPLE,
similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K,
num_queries: int = 4,
use_async: bool = True,
verbose: bool = False,
callback_manager: Optional[CallbackManager] = None,
objects: Optional[List[IndexNode]] = None,
object_map: Optional[dict] = None,
retriever_weights: Optional[List[float]] = None,
) -> None:
self.num_queries = num_queries
self.query_gen_prompt = query_gen_prompt or QUERY_GEN_PROMPT
self.similarity_top_k = similarity_top_k
self.mode = mode
self.use_async = use_async
self._retrievers = retrievers
if retriever_weights is None:
self._retriever_weights = [1.0 / len(retrievers)] * len(retrievers)
else:
# Sum of retriever_weights must be 1
total_weight = sum(retriever_weights)
self._retriever_weights = [w / total_weight for w in retriever_weights]
self._llm = (
resolve_llm(llm, callback_manager=callback_manager) if llm else Settings.llm
)
super().__init__(
callback_manager=callback_manager,
object_map=object_map,
objects=objects,
verbose=verbose,
)
参数解析
- retrievers: 一个包含多个
BaseRetriever
实例的列表,表示要融合的检索器。 - llm: 可选参数,用于指定语言模型。如果不提供,将使用默认设置。
- query_gen_prompt: 可选参数,用于生成查询的提示语。
- mode: 融合模式,默认为
FUSION_MODES.SIMPLE
。 - similarity_top_k: 相似度最高的K个结果,默认为
DEFAULT_SIMILARITY_TOP_K
。 - num_queries: 生成的查询数量,默认为4。
- use_async: 是否使用异步处理,默认为
True
。 - verbose: 是否输出详细信息,默认为
False
。 - callback_manager: 可选参数,用于管理和调度回调函数。
- objects: 可选参数,包含索引节点的列表。
- object_map: 可选参数,对象映射字典。
- retriever_weights: 可选参数,检索器的权重列表。
初始化过程
-
设置基本属性:
self.num_queries = num_queries self.query_gen_prompt = query_gen_prompt or QUERY_GEN_PROMPT self.similarity_top_k = similarity_top_k self.mode = mode self.use_async = use_async
-
初始化检索器和权重:
self._retrievers = retrievers if retriever_weights is None: self._retriever_weights = [1.0 / len(retrievers)] * len(retrievers) else: total_weight = sum(retriever_weights) self._retriever_weights = [w / total_weight for w in retriever_weights]
-
初始化语言模型:
self._llm = ( resolve_llm(llm, callback_manager=callback_manager) if llm else Settings.llm )
-
调用父类初始化:
super().__init__( callback_manager=callback_manager, object_map=object_map, objects=objects, verbose=verbose, )
实际应用示例
假设我们有两个检索器retriever1
和retriever2
,并且我们希望使用QueryFusionRetriever
来融合它们:
from some_module import BaseRetriever, QueryFusionRetriever, LLMType, CallbackManager
# 假设retriever1和retriever2已经初始化
retriever1 = BaseRetriever(...)
retriever2 = BaseRetriever(...)
# 初始化QueryFusionRetriever
fusion_retriever = QueryFusionRetriever(
retrievers=[retriever1, retriever2],
llm=LLMType(...),
query_gen_prompt="Generate queries based on the following context:",
mode=FUSION_MODES.SIMPLE,
similarity_top_k=5,
num_queries=4,
use_async=True,
verbose=True,
callback_manager=CallbackManager(...),
)
# 使用fusion_retriever进行查询
results = fusion_retriever.retrieve("example query")
print(results)
总结
通过本文的详细解析,我们深入理解了QueryFusionRetriever
类的实现原理和应用方法。该类通过融合多个检索器,生成并执行多个查询,从而显著提升检索的准确性和全面性。希望本文能为您的编程实践提供有益的参考和帮助。