- 博客(13)
- 收藏
- 关注
原创 基于 LangChain+LangGraph 来实现一个翻译项目
本文基于 LangChain 和 LangGraph 实现了一个具有自我反思功能的翻译项目
2024-07-24 21:59:06 803
原创 LlamaIndex 结构化输出
本文展示了LlamaIndex中进行结构化大模型输出的多个示例,包括LLMTextCompletionProgram、FunctionCallingProgram 的使用等。
2024-07-14 22:33:34 1214
原创 langchain 入门中篇:数据封装,Memory 封装
本文主要介绍在 langchain 中如何加载外部的数据源,如何对文档切分还有组件 memory 的使用
2024-07-02 17:17:07 854
原创 LangChain 入门上篇:模型 I/O 封装
本文主要介绍 langchain 中模型的输入输出的封装,是关于 langchain AI 编程的入门教程
2024-07-02 10:32:16 1137
原创 自然语言建 agent 实战
用自然语言也可以创建一个 agent,这就是用户可以自己定义垂直领域 agent 的原理吧。本文通过 llamaIndex 做的一个基于自然语言生成 agent 分析研报回答问题的代码,拿去用,不谢
2024-06-27 12:02:09 572
原创 使用 LlamaIndex 做一个智能体根据 PDF 回答问题
LlamaIndex 是一个为开发「上下文增强」的大语言模型应用的框架(也就是SDK)。上下文增强,泛指任何在私有或特定领域数据基础上应用大语言模型的情况。例如:Question-Answering Chatbots (也就是 RAG)Document Understanding and Extraction (文档理解与信息抽取)Autonomous Agents that can perform research and take actions (智能体应用)
2024-06-26 17:26:25 1628
原创 通过 Assistants API 将 GPT-4o 集成到自己的业务系统
顾名思义就是助手 API, 你可以在 OpenAI 官网添加一个智能体,这个智能体就是 assistant,如何想集成这个 assistant 到你的应用中就是通过 Assistants API。本质上就是接口调用。if city == "上海":res = {elif city == "北京":res = {else:res = {优点:是方便,代码咔咔几行就能集成到自己的应用中了缺点:不易控制,比如 LLM 死活不掉你的自定义方法的时候你是真没办法的。
2024-06-24 11:20:51 1333
原创 如何本地化部署大模型
4.更高的响应速度性能更好,本地化部署可以减少因网络延迟带来的影响,特别是在处理大量数据或需要实时响应的应用场景中,本地部署可以提供更快的处理速度和更好的用户体验。一般跑大模型我们很少有本地电脑,因为对配置要求有点高,还要有显卡,我的电脑是渣渣连olo都跑不了的,所以就直接用阿里云来跑模型了。3.更稳定可靠,本地化部署可以减少对互联网连接的依赖,提高系统的稳定性和可靠性。5.合规性审查,这是最重要的。对于需要符合特定行业规范和政府审查要求的企业,本地化部署可以更方便地接受监管机构的审查,确保业务合规。
2024-06-14 15:55:25 777
原创 通过 Function Calling 连接 GPT 和你的业务系统
GPT 的能力很强,但是很多人不知道如何去使用,如何去落地到自己的业务系统现在 OpenAI 开发了两个能力 Actions,Function Calling。GPT 通过这两个能力与外部世界打通。本文主要介绍 Function Calling。
2024-06-13 16:50:09 708
学而思幼小衔接拼音教程,视频录播课地址
2024-05-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人