SentenceSplitter 代码功能详解
SentenceSplitter
是一个用于文本分割的类,特别设计用于保持句子和段落的完整性。与基本的 TokenTextSplitter 相比,它减少了在节点块末尾出现不完整句子的可能性。
主要功能
- 智能分割:优先保持完整句子和段落的完整性
- 多级分割策略:采用从粗到细的分割策略
- 重叠控制:支持块之间的重叠以保持上下文
- 元数据处理:可以处理包含元数据的文本
核心组件
初始化参数
chunk_size
:每个块的最大 token 数量(默认 1024)chunk_overlap
:块之间的 token 重叠量(默认 200)separator
:默认分隔符(空格)paragraph_separator
:段落分隔符(默认\n\n\n
)secondary_chunking_regex
:备用正则表达式用于句子分割
分割策略层级
-
第一级分割:
- 按段落分隔符分割
- 使用句子分词器(默认 NLTK 句子分词器)
-
第二级分割(当第一级分割不够细时):
- 按备用正则表达式分割
- 按默认分隔符(空格)分割
- 按字符分割
核心方法
split_text(text: str)
:基础分割方法split_text_metadata_aware(text: str, metadata_str: str)
:考虑元数据长度的分割方法_split(text: str, chunk_size: int)
:实际执行分割的内部方法_merge(splits: List[_Split], chunk_size: int)
:合并小分割为适当大小的块
辅助类
_Split
数据类,包含:
text
:分割后的文本is_sentence
:标记是否为完整句子token_size
:文本的 token 长度
工作流程
- 预处理:检查文本是否为空
- 分割阶段:
- 尝试用高级分割方法(段落、句子)
- 如果分割后仍太大,递归使用更细的分割方法
- 合并阶段:
- 将小分割合并为适当大小的块
- 处理重叠部分
- 后处理:
- 移除空白块
- 去除首尾空白
特点
- 递归分割:对于过大的分割块会递归应用更细的分割策略
- 智能重叠:从上一个块末尾获取重叠内容,保持上下文
- 元数据感知:自动调整块大小以容纳元数据
- 错误处理:检查元数据是否过长等边界情况
使用场景
这种分割器特别适合:
- 需要保持句子完整性的 NLP 任务
- 处理结构化文档(如包含段落)
- 需要块间重叠以保持上下文连贯性的应用
- 需要处理元数据的场景
通过这种多级分割策略,SentenceSplitter 能够在保持语义完整性的同时,有效地将长文本分割为适当大小的块。