SentenceSplitter 代码功能详解

SentenceSplitter 代码功能详解

SentenceSplitter 是一个用于文本分割的类,特别设计用于保持句子和段落的完整性。与基本的 TokenTextSplitter 相比,它减少了在节点块末尾出现不完整句子的可能性。

主要功能

  1. 智能分割:优先保持完整句子和段落的完整性
  2. 多级分割策略:采用从粗到细的分割策略
  3. 重叠控制:支持块之间的重叠以保持上下文
  4. 元数据处理:可以处理包含元数据的文本

核心组件

初始化参数

  • chunk_size:每个块的最大 token 数量(默认 1024)
  • chunk_overlap:块之间的 token 重叠量(默认 200)
  • separator:默认分隔符(空格)
  • paragraph_separator:段落分隔符(默认 \n\n\n
  • secondary_chunking_regex:备用正则表达式用于句子分割

分割策略层级

  1. 第一级分割

    • 按段落分隔符分割
    • 使用句子分词器(默认 NLTK 句子分词器)
  2. 第二级分割(当第一级分割不够细时):

    • 按备用正则表达式分割
    • 按默认分隔符(空格)分割
    • 按字符分割

核心方法

  1. split_text(text: str):基础分割方法
  2. split_text_metadata_aware(text: str, metadata_str: str):考虑元数据长度的分割方法
  3. _split(text: str, chunk_size: int):实际执行分割的内部方法
  4. _merge(splits: List[_Split], chunk_size: int):合并小分割为适当大小的块

辅助类

_Split 数据类,包含:

  • text:分割后的文本
  • is_sentence:标记是否为完整句子
  • token_size:文本的 token 长度

工作流程

  1. 预处理:检查文本是否为空
  2. 分割阶段
    • 尝试用高级分割方法(段落、句子)
    • 如果分割后仍太大,递归使用更细的分割方法
  3. 合并阶段
    • 将小分割合并为适当大小的块
    • 处理重叠部分
  4. 后处理
    • 移除空白块
    • 去除首尾空白

特点

  1. 递归分割:对于过大的分割块会递归应用更细的分割策略
  2. 智能重叠:从上一个块末尾获取重叠内容,保持上下文
  3. 元数据感知:自动调整块大小以容纳元数据
  4. 错误处理:检查元数据是否过长等边界情况

使用场景

这种分割器特别适合:

  • 需要保持句子完整性的 NLP 任务
  • 处理结构化文档(如包含段落)
  • 需要块间重叠以保持上下文连贯性的应用
  • 需要处理元数据的场景

通过这种多级分割策略,SentenceSplitter 能够在保持语义完整性的同时,有效地将长文本分割为适当大小的块。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值