24 使用LlamaIndex自动提取元数据

使用LlamaIndex自动提取元数据

在LlamaIndex中,你可以利用大型语言模型(LLMs)来自动提取元数据。本文将介绍如何使用我们的元数据提取器模块来自动化这一过程。

元数据提取器模块

我们的元数据提取器模块包括以下“特征提取器”:

  • SummaryExtractor:自动提取一组节点的摘要。
  • QuestionsAnsweredExtractor:提取每个节点可以回答的一组问题。
  • TitleExtractor:提取每个节点上下文的标题。
  • EntityExtractor:提取每个节点内容中提到的实体(如地点、人物、事物的名称)。

使用示例

你可以将这些元数据提取器与我们的节点解析器链式结合使用。以下是一个示例:

from llama_index.core.extractors import (
    TitleExtractor,
    QuestionsAnsweredExtractor,
)
from llama_index.core.node_parser import TokenTextSplitter

# 定义文本分割器
text_splitter = TokenTextSplitter(
    separator=" ", chunk_size=512, chunk_overlap=128
)

# 定义标题提取器和问题提取器
title_extractor = TitleExtractor(nodes=5)
qa_extractor = QuestionsAnsweredExtractor(questions=3)

# 假设文档已定义 -> 提取节点
from llama_index.core.ingestion import IngestionPipeline

pipeline = IngestionPipeline(
    transformations=[text_splitter, title_extractor, qa_extractor]
)

nodes = pipeline.run(
    documents=documents,
    in_place=True,
    show_progress=True,
)

或者,你可以将提取的元数据插入到一个索引中:

from llama_index.core import VectorStoreIndex

index = VectorStoreIndex.from_documents(
    documents, transformations=[text_splitter, title_extractor, qa_extractor]
)

通过这些方法,你可以自动化地从文档中提取有用的元数据,并将其用于构建索引或其他分析任务。这不仅提高了效率,还使得数据处理更加智能化。

Llamaindex是一个开源的搜索引擎,可以用于快速搜索和索引大型数据集。为了在本地部署Llamaindex,您需要按照以下步骤进行操作。 首先,您需要从Llamaindex的官方GitHub页面上下载源代码。确保您的计算机已安装了Git系统,然后使用命令行工具输入以下命令来克隆代码库: ``` git clone https://github.com/llama-lab/llamaindex.git ``` 下载完成后,进入项目文件夹并创建一个Python虚拟环境。使用以下命令可以创建一个虚拟环境: ``` python3 -m venv llama-env ``` 然后需要激活虚拟环境。在Mac和Linux系统下,使用以下命令: ``` source llama-env/bin/activate ``` 在Windows系统下,使用以下命令: ``` llama-env\Scripts\activate ``` 接下来,安装Llamaindex的依赖项。在虚拟环境中运行以下命令: ``` pip install -r requirements.txt ``` 等待依赖项安装完成后,可以开始配置Llamaindex。编辑`config.yaml`文件,根据您的需求进行相应的修改。您可以设置数据集的路径、索引文件的位置和其他相关参数。 完成配置后,运行以下命令来创建索引: ``` python3 llama.py -f path/to/dataset ``` 上述命令中的`path/to/dataset`应替换为实际的数据集路径。运行该命令后,Llamaindex会开始索引数据集。 当索引完成后,您可以使用以下命令来搜索索引中的数据: ``` python3 llama.py -s "your search query" ``` 您可以将`"your search query"`替换为实际的搜索关键字。Llamaindex将返回与关键字匹配的结果。 以上就是在本地部署Llamaindex的步骤。祝您在使用Llamaindex时取得成功!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值