WSL 中安装 Anaconda 的详细步骤和常用 Conda 指令详解(同样适用于所有版本的 Ubuntu)

一、Anconda与原生python对比(AI):

特性Anaconda原生 Python
环境管理强大,支持多虚拟环境,自动处理依赖冲突需要手动管理环境,依赖问题较多
包管理conda 包管理器,支持科学计算库,快速安装pip 安装,适合常见 Python 包
适用场景数据科学、机器学习、复杂的依赖管理轻量级开发、一般项目开发

在不同的项目中,可能会用到不同版本的依赖,而依赖冲突的情况时有发生,Anaconda 无疑是很不错的选择,因为它提供了更加简便的依赖管理和环境隔离,减少了配置和兼容性问题。而如果你只是进行常规的 Python 开发,且依赖关系较少,使用 原生 Python 配合 pip 也是完全可以满足需求的。


二、安装 Anaconda

这里介绍在 WSL 中如何安装和使用anaconda(如果网络较差,推荐使用清华镜像官网,除复制下载链接外,其他步骤完全相同。)

  1. 创建一个文件夹,用来存放下载的文件或安装包(WSL 需要创建,Ubuntu 会自带)。

    mkdir ~/Download
    
  2. 访问 Anaconda 官方网站,复制最新版的 anaconda3 下载链接。

    • 点击 Skip registration 跳转到下载界面。
      图片

    • 找到对应的下载选项,右键点击复制链接地址。(一般下载 X86 版本)
      在这里插入图片描述

  3. 下载 anaconda 的安装文件。

    cd ~/Download
    wget https://repo.anaconda.com/archive/Anaconda3-xxxx.xx-x-Linux-x86_64.sh
    

    图片

  4. 给 .sh 文件文件添加可执行的权限,并运行安装脚本。

    chmod +x Anaconda3-2024.10-1-Linux-x86_64.sh
    ./Anaconda3-2024.10-1-Linux-x86_64.sh
    

    在这里插入图片描述

    点击 ENTER 后,出现的是 Anaconda 服务条款,点击 空格 翻页,最后会出现是否接受条款的选择,输入 yes ,ENTER
    在这里插入图片描述
    接受条款后,提示 Anaconda 将要安装的位置,默认安装是在 /home/username/anaconda3 文件夹中,一般选择默认安装即可进行安装。

  5. 安装结束后,会提示是否要配置环境变量,此处需注意,默认选择 no,点击 ENTER 即不配置环境变量,请输入 yes 后,再点击 ENTER。最后输入激活环境即可,成功激活 Conda 环境后,会显示激活的环境名称 (base)

    source ~/.bashrc
    

    在这里插入图片描述

  6. 如果未添加环境变量可以手动添加

    vi ~/.bashrc
    

    在文件最下方添加:

    export PATH="~/anaconda3/bin":$PATH
    source ~/anaconda3/bin/activate #修改终端的默认 python 为 anaconda
    

    wq 保存并退出文件,执行 source ~/.bashrc 激活环境。


三、常用的 Conda 指令

  1. 查看已有的虚拟环境
    conda env list
    
  2. 创建新的虚拟环境(建议不要在 base 环境中安装任何依赖)
    # -n: 指定环境名称为 venv_name,名称可自行修改。
    # python=3.11: 指定 python 的版本,可根据需求修改。
    conda create -n venv_name python=3.11
    
  3. 激活虚拟环境
    激活虚拟环境 venv_name 后,(venv_name) 会替换终端中的 (base)
    # 激活环境名称为 venv_name 的虚拟环境,可自行指定。
    conda activate venv_name
    
  4. 查看当前激活的环境中安装的所有依赖
    conda list
    
  5. 退出虚拟环境
    conda deactivate
    
  6. 虚拟环境回滚
    # 查看当前环境中所有可用版本的历史记录,记下版本号N(1,2,...)
    conda list --revisions
    # 安装版本为 N 的历史版本
    conda install --revision N
    # 注意这里是安装,如果你环境中有添加新的依赖,回滚是否可以删除这些“多余”的依赖?
    
  7. 删除虚拟环境
    conda remove -n venv_name --all
    
  8. 清除 Conda 缓存
    在使用 Conda 安装依赖时,有时会发现没有下载的过程,直接就进行了安装,安装的版本也可能会略有差别。这说明在之前可能下载过这些依赖包,并将其保存在了缓存中,清除缓存后,重新安装即可。另外清除缓存也可以节省大量的空间,提高电脑的效率。
    # 删除没有用的包
    conda clean -p
    # 删除tar打包
    conda clean -t
    # 删除无用的包和缓存
    conda clean --all
    

参考

[1]: Anaconda 官方
[2]: Ubuntu20.04安装anaconda并默认激活conda base环境(步骤详细/操作简单实用)
[3]: 让你的 conda 回滚 到以前版本的环境
[4]: Conda清理缓存

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值