给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和
11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 10^4
解题思路:
1.状态是可以叠加的
2.即12的完全平方数的个数,可以由11,8,3的完全平方个数中最小的 + 1得到
3.后面的新值需要前面的值做铺垫,所以循环从小到大求完全没有问题
4.初始值0的完全平方个数为0,1的完全平方数为1,dp[i] = i
动态规划代码:
class Solution {
public int numSquares(int n) {
int dp[] = new int[n + 1];
for(int i = 1; i <= n; i ++) {
dp[i] = i;
for(int j = 1; i - j * j >= 0; j ++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
return dp[n];
}
}
这里正向推理也可以
正推代码:
class Solution {
public int numSquares(int n) {
int dp[] = new int[n + 1];
for(int i = 0; i <= n; i ++) dp[i] = i;
for(int i = 0; i <= n; i ++)
for(int j = 1; j * j + i <= n; j ++) {
dp[i + j * j] = Math.min(dp[i + j * j], dp[i] + 1);
}
return dp[n];
}
}
初始化得放在外面