多目标优化
Reacubeth
imperfect but true
展开
-
NSGA-II资料合集
关于NSGA-II的一些资料NSGA-II中文翻译MATLAB代码NSGA-II的解释简介关于演化计算生物系统中,进化被认为是一种成功的自适应方法,具有很好的健壮性。基本思想:达尔文进化论是一种稳健的搜索和优化机制。大多数生物体是通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,优胜劣汰。演化...原创 2019-10-29 15:47:27 · 3189 阅读 · 2 评论 -
基于稀疏大规模矩阵的多目标进化算法简介
简介可以看到本文的特色图片是个极度稀疏连接的神经网络,它是由我们即将介绍论文中的算法SparseEA得到的。此篇论文是BIMK的田野、张兴义等人发表在IEEE Transactions on Evolutionary Computation(SCI 一区)期刊上的,时间2019.4。论文提出了一种解决大规模稀疏问题的多目标算法,大规模稀疏存在于许多领域:机器学习、数据挖掘、神经网络。作...原创 2019-06-02 08:50:18 · 2150 阅读 · 6 评论 -
HyperVolume多目标评价指标概述
提出Hypervolume 指标评价方法最早是由 Zitzler 等提出,它表示由解集中的个体与参考点在目标空间中所围成的超立方体的体积。评价标准Hypervolume 指 标 评 价 方 法 是 一 种 与 Pareto 一致(Pareto-compliant)的评价方法,也就是说如果一个解集 S 优于另一个解集 S’,那么解集S 的 Hypervolume 指标亦会大于解集 S’的 Hy...原创 2019-04-06 12:26:56 · 19092 阅读 · 4 评论 -
NSGA2算法中文详解与MATLAB实现整理
NSGA2算法NSGA-II多目标遗传算法概述http://www.omegaxyz.com/2017/04/14/nsga-iiintro/NSGA2算法MATLAB实现(能够自定义优化函数)http://www.omegaxyz.com/2018/01/22/new_nsga2/NSGA2算法特征选择MATLAB实现(多目标)http://www.omegaxyz.co...原创 2019-03-07 20:55:25 · 20376 阅读 · 12 评论 -
基于拥挤距离与变异支配的多目标PSO算法
这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。其中NSPSO是参考了NSGA2的框架和思想。下面具体说说CMDPSO。CMDPSO全称是Crowding,Mutation,Dominance PSO算法。NSPSO算法概述与实现http://www.omegaxyz.com/2018/09/01/n...原创 2018-10-27 16:33:53 · 4941 阅读 · 5 评论 -
基于非支配排序的多目标PSO算法
这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。其中NSPSO是参考了NSGA2的框架和思想。下面具体说说NSPSO。非支配排序 来自NSGA2中的非支配排序该需要保存两个量:(1).支配个数np。该量是在可行解空间中可以支配个体p的所有个体的数量。(2).被支配个体集合SP。该量是可行解...原创 2018-09-05 20:12:32 · 4416 阅读 · 5 评论 -
NSGA2算法MATLAB
NSGA2算法MATLAB实现(能够自定义优化函数) 以前写了一个简单的NSGA2的算法能够用在ZDT1函数上:http://www.omegaxyz.com/2017/05/04/nsga2matlabzdt1/那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 更多内容访问omegaxyz.comNSGA2的过程为:原创 2018-01-22 16:18:24 · 10557 阅读 · 39 评论 -
NSGA-Ⅱ算法C++实现(测试函数为ZDT1)
在看C++实现之前,请先看一下NSGA-II算法概述http://www.omegaxyz.com/2017/04/14/nsga-iiintro/NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面: ①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了转载 2017-06-15 23:38:13 · 12890 阅读 · 33 评论 -
NSGA2 算法Matlab实现
为了能随时了解Matlab主要操作及思想。故本文贴上NSGA-Ⅱ算法Matlab实现(测试函数为ZDT1)。 更多内容访问omegaxyz.com NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面: ①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了原创 2018-01-22 11:32:57 · 9824 阅读 · 28 评论 -
多目标优化问题概述
图片不清楚请看多目标问题详解:多目标问题详解 定义:若干冲突或相互影响条件约束下在给定区域内寻找尽可能的最优解(非劣解)。 关键词:条件约束,折中最优解(解并非唯一是与单目标优化问题的本质区别) 文字描述: D个决策变量参数; N个目标函数; m+n个约束条件。 数学描述:X(小写)为D维决策向量;y为目标向量;N为优化目标总数;gi(x)<=0和hj(x)为条件约束(为已知确定的可行原创 2017-08-29 20:34:16 · 28687 阅读 · 2 评论 -
差分分组合作协同进化MATLAB代码
合作协同进化已经引入协同进化算法,目的是通过分而治之的范式解决日益复杂的优化问题。理论上,协同改 变子成分的想法是十分适合解决大规模优化问题的。然而在实践中,没有关于问题的先验知识, 问题应如何分解是尚不清楚的。在本文中,我们提出一个自动分解策略,称为差分分组,可以揭示决策变量的底层交互结构和形成子成分,以使它们之间的相互依存关系保持到最低限度。我们在数学上展示这样一个分解策略如何从部分可分性的定义原创 2017-10-25 09:43:22 · 2664 阅读 · 1 评论 -
合作协同进化算法概述(Cooperative Coevolution)
合作协同进化(Cooperative Coevolution)是求解大规模优化算法一个有效的方法。将大规模问题分解为一组组较小的子问题。而合作协同进化的关键是分解策略。分解策略的分类:①随机分解:随机选择基因的顺序,但是用户要决定组的数量和组的大小。②扰动:使用若干方法扰动决策变量尝试对变量进行分组。③模型建构:基于个体数量s的概率模型,在进化过程中迭代更新。下面是CC算法不同的分解策略体现的论文:原创 2017-10-15 22:37:32 · 12994 阅读 · 0 评论 -
多目标优化详解【转载】
欢迎大家访问我的网站发现更多内容omegaxyz.com 多目标优化问题详解 生活中 ,许多问题都是由相互冲突和影响的多个目标组成。人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化问题 ,也就是多目标优化问题。优化问题存在的优化目标超过一个并需要同时处理 ,就成为多目标优化问题。 多目标优化问题在工程应用等现实生活中非常普遍并且处于非常重要的地位 ,这些实原创 2017-09-02 11:05:47 · 42765 阅读 · 8 评论 -
NSGA2算法中文版详细介绍
NSGA2主要是对NSGA算法的改进。NSGA是N. Srinivas 和 K. Deb在1995年发表的一篇名为《Multiobjective function optimization using nondominated sorting genetic algorithms》的论文中提出的。该算法在快速找到Pareto前沿和保持种群多样性方面都有很好的效果,不过在这么多年的应用中也出现了如下的原创 2017-09-01 15:14:31 · 45089 阅读 · 11 评论