1.理论
纯度(purity)
对于一个分支结点,如果该结点所包含的样本都属于同一类,那么它的纯度为1,而我们总是希望纯度越高越好,也就是尽可能多的样本属于同一类别。那么如何衡量“纯度”呢?由此引入“信息熵”的概念。
信息熵(information entropy)
假定当前样本集合D中第k类样本所占的比例为pk(k=1,2,…,|y|),则D的信息熵定义为:
Ent(D) = -∑k=1 pk·log2 pk (约定若p=0,则log2 p=0)
1
显然,Ent(D)值越小,D的纯度越高。因为0<=pk<= 1,故log2 pk<=0,Ent(D)>=0. 极限情况下,考虑D中样本同属于同一类,则此时的Ent(D)值为0(取到最小值)。当D中样本都分别属于不同类别时,Ent(D)取到最大值log2 |y|.
信息增益(information gain)
假定离散属性a有V个可能的取值{a1,a2,…,aV}. 若使用a对样本集D进行分类,则会产生V个分支结点,记Dv为第v个分支结点包含的D中所有在属性a上取值为av的样本。不同分支结点样本数不同,我们给予分支结点不同的权重:|Dv|/|D|, 该权重赋予样本数较多的分支结点更大的影响、由此,用属性a对样本集D进行划分所获得的信息增益定义为:
Gain(D,a) = Ent(D)-∑v=1 |Dv|/|D|·Ent(Dv)
1
其中,Ent(D)是数据集D划分前的信息熵,∑v=1 |Dv|/|D|·Ent(Dv)可以表示为划分后的信息熵。“前-后”的结果表明了本次划分所获得的信息熵减少量,也就是纯度的提升度。显然,Gain(D,a) 越大,获得的纯度提升越大,此次划分的效果越好。
增益率(gain ratio)
基于信息增益的最优属性划分原则——信息增益准则,对可取值数据较多的属性有所偏好。C4.5算法使用增益率替代信息增益来选择最优划分属性,增益率定义为:
Gain_ratio(D,a) = Gain(D,a)/IV(a)
1
其中
IV(a) = -∑v=1 |Dv|/|D|·log2 |Dv|/|D|
1
称为属性a的固有值。属性a的可能取值数目越多(即V越大),则IV(a)的值通常会越大。这在一定程度上消除了对可取值数据较多的属性的偏好。
事实上,增益率准则对可取值数目较少的属性有所偏好,C4.5算法并不是直接使用增益率准则,而是先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。
1
基尼指数(Gini index)
CART决策树算法使用基尼指数来选择划分属性,基尼指数定义为:
Gini(D) = ∑k=1 ∑k'≠1 pk·pk' = 1- ∑k=1 pk·pk
1
可以这样理解基尼指数:从数据集D中随机抽取两个样本,其类别标记不一致的概率。Gini(D)越小,纯度越高。
属性a的基尼指数定义:
Gain_index(D,a) = ∑v=1 |Dv|/|D|·Gini(Dv)
1
使用基尼指数选择最优划分属性,即选择使得划分后基尼指数最小的属性作为最优划分属性。
2.代码
import numpy as np
import pandas as pd
import sklearn.tree as st
import math
data = pd.read_csv('./西瓜数据集.csv')
data
初始化
# 返回值
# dataSet 数据集
# featureNames 标签
# featureNamesSet 列标签
def readWatermelonDataSet():
dataSet = data.values.tolist()
featureNames =['色泽', '根蒂', '敲击', '纹理', '脐部', '触感']
#获取featureNamesSet
featureNamesSet = []
for i in range(len(dataSet[0]) - 1):
col = [x[i] for x in dataSet]
colSet = set(col)
featureNamesSet.append(list(colSet))
return dataSet, featureNames, featureNamesSet
# 能够显示中文
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['font.serif'] = ['SimHei']
# 分叉节点,也就是决策节点
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
# 叶子节点
leafNode = dict(boxstyle="round4", fc="0.8")
# 箭头样式
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
"""
绘制一个节点
:param nodeTxt: 描述该节点的文本信息
:param centerPt: 文本的坐标
:param parentPt: 点的坐标,这里也是指父节点的坐标
:param nodeType: 节点类型,分为叶子节点和决策节点
:return:
"""
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):
"""
获取叶节点的数目
:param myTree:
:return:
"""
# 统计叶子节点的总数
numLeafs = 0
# 得到当前第一个key,也就是根节点
firstStr = list(myTree.keys())[0]
# 得到第一个key对应的内容
secondDict = myTree[firstStr]
# 递归遍历叶子节点
for key in secondDict.keys():
# 如果key对应的是一个字典,就递归调用
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
# 不是的话,说明此时是一个叶子节点
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
"""
得到数的深度层数
:param myTree:
:return:
"""
# 用来保存最大层数
maxDepth = 0
# 得到根节点
firstStr = list(myTree.keys())[0]
# 得到key对应的内容
secondDic = myTree[firstStr]
# 遍历所有子节点
for key in secondDic.keys():
# 如果该节点是字典,就递归调用
if type(secondDic[key]).__name__ == 'dict':
# 子节点的深度加1
thisDepth = 1 + getTreeDepth(secondDic[key])
# 说明此时是叶子节点
else:
thisDepth = 1
# 替换最大层数
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
"""
计算出父节点和子节点的中间位置,填充信息
:param cntrPt: 子节点坐标
:param parentPt: 父节点坐标
:param txtString: 填充的文本信息
:return:
"""
# 计算x轴的中间位置
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
# 计算y轴的中间位置
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
# 进行绘制
createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
"""
绘制出树的所有节点,递归绘制
:param myTree: 树
:param parentPt: 父节点的坐标
:param nodeTxt: 节点的文本信息
:return:
"""
# 计算叶子节点数
numLeafs = getNumLeafs(myTree=myTree)
# 计算树的深度
depth = getTreeDepth(myTree=myTree)
# 得到根节点的信息内容
firstStr = list(myTree.keys())[0]
# 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
# 绘制该节点与父节点的联系
plotMidText(cntrPt, parentPt, nodeTxt)
# 绘制该节点
plotNode(firstStr, cntrPt, parentPt, decisionNode)
# 得到当前根节点对应的子树
secondDict = myTree[firstStr]
# 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
# 循环遍历所有的key
for key in secondDict.keys():
# 如果当前的key是字典的话,代表还有子树,则递归遍历
if isinstance(secondDict[key], dict):
plotTree(secondDict[key], cntrPt, str(key))
else:
# 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
# 打开注释可以观察叶子节点的坐标变化
# print((plotTree.xOff, plotTree.yOff), secondDict[key])
# 绘制叶子节点
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
# 绘制叶子节点和父节点的中间连线内容
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
# 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
"""
需要绘制的决策树
:param inTree: 决策树字典
:return:
"""
# 创建一个图像
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
# 计算出决策树的总宽度
plotTree.totalW = float(getNumLeafs(inTree))
# 计算出决策树的总深度
plotTree.totalD = float(getTreeDepth(inTree))
# 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
plotTree.xOff = -0.5/plotTree.totalW
# 初始的y轴偏移量,每次向下或者向上移动1/D
plotTree.yOff = 1.0
# 调用函数进行绘制节点图像
plotTree(inTree, (0.5, 1.0), '')
# 绘制
plt.show()