自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 问答 (1)
  • 收藏
  • 关注

原创 总结16(12.20-12.26)

本周完成了

2021-12-26 21:59:14 346

原创 总结15(12.13-12.19)

这周

2021-12-19 22:55:16 676

原创 总结14(12.6-12.12)

本周主要是复习考试,然后学习了

2021-12-12 20:25:25 304

原创 总结13(11.29-12.5)

本周复习泛函和非线性数值考试。

2021-12-12 19:38:41 298

原创 总结12(11.22-11.28)

本周安装配置了julia

2021-11-28 21:06:09 267

原创 总结11(11.15-11.21)

本周主要是准备组会内容和复习常微分考试。

2021-11-22 21:52:41 258

原创 总结10(11.8-11.14)

本周主要是对考试科目进行复习,然后成功安装了了mindopt的python软件包,并用python语言运行了其中的案例。然后运行了fista算法对二维地震数据的重构,并已经改写好了的相应的ista算法。下面是在python中调用mindopt库对线性规划问题的求解。对以下问题求解:* Minimize * obj: 1 x0 + 1 x1 + 1 x2 + 1 x3 * Subject To * c1 : 1 x0 + 1 x1 + 2 x2 + 3 x3 &...

2021-11-15 07:51:45 180

原创 总结9(11.1-11.7)

本周主要是复习偏微分方程数值解的考试,完成了机器学习模型的选择,欠拟合和过拟合的学习。 在机器学习过程中模型在训练集上更准确时,但在测试集上不一定准确。这是因为误差分为在训练集上的训练误差(training error)和测试集上的泛化误差(generalization error),所以机器学习模型应关注降低泛化误差。一、模型选择1.1相关概念1.训练误差(training error):模型在训练数据上的误差。2.泛化误差(generalization error):模型在...

2021-11-07 18:16:41 124

原创 阿里云优化求解器mindopt安装配置教程

本人在安装mindopt的过程中,由于官网的教程中有些细节写得不详细,遇到了一些问题,所以对此进行了总结,以下是我的安装配置过程(windows平台下)。一、下载安装从https://solver.damo.alibaba.com求解器SDK下载和安装 (aliyun.com)https://solver.damo.alibaba.com中下载 Windows 64-bit/x86MindOpt发行版(win64-x86-0.14.0),双击安装文件,根据指引安装即可。二、配...

2021-11-01 19:31:00 2039

原创 总结8(10.25-11.1)

这周考了教师资格证

2021-10-31 21:31:14 277

原创 总结7(10.18-10.24)

本周除了复习考试,主要完成了多层感知机的学习

2021-10-24 21:14:23 106

原创 梯度下降、ISTA和FISTA算法收敛速率推导

梯度下降法收敛速率假设是凸可微的,并且满足。即是利普希茨连续()。定理:固定步长的梯度下降法满足,即梯度下降的收敛速率为。证明:由满足利普希茨条件 , (4.22)将代入,利用的凸性有:即,取所以有: , (4.23)由于, (4.24)(4.24)的证明如下:, (4.25)所以有, (4.26)令对(4.26)从0到k-1迭代求和有, (4.27)因为凸函数的目标函数总是减小的即...

2021-10-17 15:47:20 1230

原创 总结5(10.4-10.10)

我们可以通过下标来访问任意⼀个样本: 本周学习了softmax回归,区别去上次学的线性回归,softmax回归其实是一个分类问题,和线性回归不同,softmax回归的输出单元从一个变成了多个,softmax实际是一种运算是使得输出值更适合离散值的预测和训练。1.softmax回归模型图1.线性回归神经网络图2.softmax回归神经网络 softmax回归跟线性回归⼀样将输⼊特征与权重做线性叠加。与线性回归的⼀个主要不同在于, softmax回归的输出值个...

2021-10-10 18:11:26 609

原创 总结4(9.27-10.3)

本周主要对线性回归模型进行了学习和实现,将通过深度学习框架来简洁的实现。1.生成数据集import numpy as npimport torchfrom torch.utils import datafrom d2l import torch as d2ltrue_w = torch.tensor([2, -3.4])true_b = 3.2features, labels = d2l.synthetic_data(true_w, true_b, 1000)#生成1...

2021-10-03 19:10:06 225

原创 总结3(9.20-9.26)

开学第3周,本周在常规课程学习的基础上,报名了六级考试,开始坚持每天背一点单词。完成了李沐深度学习5-8课时的学习,以下是我对部分作业题的代码编写和总结。三、线性代数作业题3.1.我们在本节中定义了形状(2,3,4)的张量X。len(X)的输出结果是什么?对于任意形状的张量X,len(X)是否总是对应于X特定轴的长度?这个轴是什么?import torchX = torch.arange(24).reshape(2, 3, 4)len(X) 输出结果为2。因为len...

2021-09-26 17:45:25 890

原创 总结2(9.13-9.19)

开学第二周,本周除了对常规课程的学习,我主要完成了李沐深度学习0-5课的学习,并完成了相关的编程作业题。以下是我的总结和作业题代码。一、数据操作作业题 张量:表示由一个数值组成的数组,这个数组可能有多个维度,可以用坐标系表示,tensor。 广播机制:当张量的形状不同时,仍然可以仍然可以通过调用广播机制来执行按元素操作。import torcha = torch.arange(3).reshape((3, 1))b = torch.arange(2).resha...

2021-09-19 20:55:39 239

原创 总结(1)

开学第一周9.6-9.12总结 本周在完成了参加开学典礼,开学体检以及学院新生会等一系列杂事的同时,我主要完成了课程的学习和组会学习。以下是我对这周各门课程学习和组会的总结。 非线性数值分析:介绍了有限差分法,投影法等常用的求解非线性方程的方法,范数以及摄动引理,矩阵范数是如何由向量范数诱导出。 偏微分方程数值解:学习了将方程离散化的基本思想,以及几种常用的差分格式(向前、向后差分,中...

2021-09-12 22:16:30 345

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除