总结9(11.1-11.7)

本周主要是复习偏微分方程数值解的考试,完成了机器学习模型的选择,欠拟合和过拟合的学习。

      在机器学习过程中模型在训练集上更准确时,但在测试集上不一定准确。这是因为误差分为在训练集上的训练误差(training error)和测试集上的泛化误差(generalization error),所以机器学习模型应关注降低泛化误差。

一、模型选择

1.1相关概念

1.训练误差(training error):模型在训练数据上的误差。

2.泛化误差(generalization error):模型在新数据上的误差。

3.验证数据集:一个用来评估模型好坏的数据集。一般从训练集中选取一部分作为验证集其余的作为训练集。

4.测试数据集:只用一次的数据集。但在实际应用中由于数据获取不易,仍然会多次使用。

1.2K折交叉验证(K-fold cross-validation)

由于验证数据集不参与模型训练,所以当训练数据不够用时,预留大量的验证数据就不太合理,一种改善的方法就是K折交叉验证。我们把原始训练数据被分成K个不重叠的⼦集。然后执⾏K次模型训练和验证, 每次在K − 1个⼦集上进⾏训练,并在剩余的⼀个⼦集(在该轮中没有⽤于训练的⼦集)上进⾏验证。最后, 通过对K次实验的结果取平均来估计训练和验证误差。

  算法过程:将训练数据分割成K块,

          for i = 1,....K.

                 使用第i块作为验证数据集,其余的作为训练数据集。

           报告K个验证集误差的平均。

常用:K=5或10.

二、过拟合和欠拟合

2.1⽋拟合(underfitting):模型无法得到较低的训练误差。

2.2过拟合(overfitting):模型的训练误差远小于它在测试数据集上的误差。

 2.3模型复杂度:

以多项式函数拟合为例,给定由单个特征𝑥和对应实数标签𝑦组成的训练数据,我们试图找到下面的𝑑d阶多项式来估计标签𝑦。

\hat{y}= \sum_{i=0}^d x^i w_i

这是一个线性回归问题,我们的特征是𝑥的幂给出的,模型的权重是𝑤𝑖给出的,偏置是𝑤0给出的。高阶多项式函数比低阶多项式函数复杂得多。高阶多项式的参数较多,模型函数的选择范围较广。因此在固定训练数据集的情况下,高阶多项式函数相对于低阶多项式的训练误差应该始终更低(最坏也是相等)。给定训练数据集,模型复杂度和误差之间的关系如下图所示,如果模型复杂度过低,容易出现欠拟合,但复杂度过高,又容易出现过拟合。

 2.4训练数据集的大小:

影响过拟合和欠拟合的一个重要因素就是训练数据集的大小,一般来说训练数据集中的样本越少,我们就越有可能(且更严重地)遇到过拟合。随着训练数据量的增加,泛化误差通常会减小。因此,在计算资源允许的范围内,通常希望训练数据集大一些,特别是在模型复杂度较高的时候。

三、多项式拟合代码

我们用以下的三阶多项式函数来生成训练和测试数据的标签。

y = 5 + 1.2x - 3.4\frac{x^2}{2!} + 5.6 \frac{x^3}{3!} + \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, 0.1^2)

3.1生成数据集

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

max_degree = 20  # 多项式的最大阶数(预计生成的)
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)  # `gamma(n)` = (n-1)!
# `labels`的维度
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)
#NumPy ndarray转换为tensor
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
    d2l.float32) for x in [true_w, features, poly_features, labels]]

3.2定义、训练、测试模型

#定义损失函数
def evaluate_loss(net, data_iter, loss): 
    metric = d2l.Accumulator(2)  # 损失的总和, 样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]
##定义训练函数
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss()
    input_shape = train_features.shape[-1]
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())

3.3使用三阶多项式拟合:

# 从多项式特征中选择前4个维度,即 1, x, x^2/2!, x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])

结果:

       因为它与数据生成函数的阶数相同,所以其效果良好,能有效的降低误差并且学习到的模型参数也接近真实值。

3.4欠拟合实验

# 从多项式特征中选择前2个维度,即 1, x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])

 可以看出训练误差只在一开始下降后,之后基本没有下降了,在完成训练后误差仍然很大。

3.5过拟合实验

# 只选取两个样本实验
train(poly_features[:2, :4], poly_features[n_train:, :4],
      labels[:2], labels[n_train:], num_epochs=400)

 可以看到,在训练样本不足的情况下,即使使用和数据模型相同的三阶多项式模型,会出现过拟合现象,训练误差较低但测试误差很高。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值