Educational Codeforces Round 79 (Rated for Div. 2) F. New Year and Handle Change

本文介绍了一种使用贪心算法和二分查找解决01串问题的方法,通过最多选择k个长度为l的子串进行翻转,目标是最小化0和1的数量。通过分析问题特性,利用wqs二分法确定最优代价,最终求得满足条件的最小翻转次数。
摘要由CSDN通过智能技术生成

传送门
题意(转换一下):
给出一个01串,可以最多选择k个l长度的子串,全部变为0或1。求min(size 0,size 1)
( 1 ≤ n , k , l ≤ 1 0 6 , l ≤ n ) (1 \le n, k, l \le 10^6, l \le n) (1n,k,l106,ln)
思路:
这道题如果可以选择越多的子串,我们可以虽然可以得到更好的值(即最小化答案),选得越多,根据贪心来看,我们最小化的增速也会越小,也就是说我们k越大,答案虽然在优化,但是优化的增速会越小,也就是说形成了一个凸函数,k是有限制的,这就想到了wqs二分,我们每次选择增加一个代价,也就是让我们原本想要的最小化变大(反着意愿来做),因此,我们二分到一个代价mid,用mid去贪心,如果这个mid恰好,我们恰好到达k,如果这个代价大了,说明我们贪心去搞,不会选择那么多长度为l的子串(因为要使总花费最小),这时候就要将代价调小,否则调大这个代价,调到一个合适的代价,选择的也正好是k个子串了。

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
int a[N];
int n,k,l;
#define x first
#define y second
#define pii pair<int,int>
pii p[N];
pii sol(int c){
	p[0]={0,0};
	for(int i=1;i<=n;i++){
		p[i]=p[i-1];
		p[i].x=p[i-1].x+a[i];
		if(i<=l){
			p[i]=min(p[i],{c,1});
		}
		else{
			p[i]=min(p[i],{p[i-l].x+c,p[i-l].y+1});
		}
	} 
	return p[n];
}
int erf(){
	int l=0,r=n;
	while(l<r){          //二分代价 
		int mid=l+r>>1;
		if(sol(mid).y<=k) r=mid;
		else l=mid+1;
	}
	int	ans=sol(l).x-k*l;
	return ans;
}
int main(){
	scanf("%d%d%d",&n,&k,&l);
	string s;
	cin>>s;
	for(int i=0;i<s.size();i++){
		if(s[i]>='a'&&s[i]<='z'){
			a[i+1]=0;
		}
		else a[i+1]=1;
	}
	int k1=erf();
	for(int i=1;i<=n;i++){
		a[i]=1-a[i];
	}
	int k2=erf();
	int res=min(k1,k2);
	printf("%d\n",res);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eeemmm123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值