硬币
总时间限制: 1000ms 内存限制: 262144kB
描述
宇航员Bob有一天来到火星上,他有收集硬币的习惯。于是他将火星上所有面值的硬币都收集起来了,一共有n种,每种只有一个:面值分别为a1,a2… an。 Bob在机场看到了一个特别喜欢的礼物,想买来送给朋友Alice,这个礼物的价格是X元。Bob很想知道为了买这个礼物他的哪些硬币是必须被使用的,即Bob必须放弃收集好的哪些硬币种类。飞机场不提供找零,只接受恰好X元。
输入
第一行包含两个正整数n和x。(1 <= n <= 200, 1 <= x <= 10000)
第二行从小到大为n个正整数a1, a2, a3 … an (1 <= ai <= x)
输出
第一行是一个整数,即有多少种硬币是必须被使用的。
第二行是这些必须使用的硬币的面值(从小到大排列)。
样例输入
5 18
1 2 3 5 10
样例输出
2
5 10
提示
输入数据将保证给定面值的硬币中至少有一种组合能恰好能够支付X元。
如果不存在必须被使用的硬币,则第一行输出0,第二行输出空行。
写在前面:啥也不说了,今天就写the flash的列传了
——————————————————————————————————————————————
思路:我首先想到用01背包求方案个数,接下来就有点虚了,最后对每种硬币进行枚举,去掉每种硬币再进行01背包dp,如果最后方案数为0,那么这种硬币一定是必须用的,但是这种方法时间复杂度为O(n×n×x),接近4*10^8,即使加了一些优化(当方案数>0即退出当前循环)也还是TLE,无奈请教聪哥(the flash),聪哥的方法是再开一个g数组,得出对于去掉第i种硬币,体积为j时g[j]=f[j]-g[j-a[i]],即g代表去掉某一种硬币后的方案数(实在觉得自己说不清楚,还是看代码吧),这样就可以把时间复杂度缩小到O(n×x)
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,a[21000],f[20010],x;
int g[20010],num[20010];
int in()
{
int t=0;
char ch=getchar();
while (ch>'9'||ch<'0') ch=getchar();
while (ch>='0'&&ch<='9') t=t*10+ch-'0',ch=getchar();
return t;
}
main()
{
n=in();x=in();
for (int i=1;i<=n;i++) a[i]=in();
f[0]=1;
for (int i=1;i<=n;i++)
for (int j=x;j>=a[i];j--)
f[j]+=f[j-a[i]];
//得出不去除硬币时的方案数
for (int i=1;i<=n;i++)
{
memset(g,0,sizeof(g));
for (int j=0;j<=x;j++)
if (j-a[i]>=0)
g[j]=f[j]-g[j-a[i]];
else g[j]=f[j];
if (g[x]==0) num[++num[0]]=a[i];
}
printf("%d\n",num[0]);
for (int i=1;i<=num[0];i++) printf("%d ",num[i]);
}