关于phi函数的积性性质的一个证明

从网上查阅资料时得到的启示,就写了下来

命题1:
对于 gcd ⁡ ( n , m ) = 1 \gcd(n,m)=1 gcd(n,m)=1,我们有 φ ( n m ) = φ ( n ) φ ( m ) \varphi(nm)=\varphi(n)\varphi(m) φ(nm)=φ(n)φ(m)

证明:考虑 n ∗ m n*m nm的方阵
1 2 3 . . . r . . . m m + 1 m + 2 m + 3 . . . m + r . . . 2 m 2 m + 1 2 m + 2 2 m + 3 . . . 2 m + r . . . 3 m . . . . . . . . . . . . . . . . . . . . . ( n − 1 ) m + 1 ( n − 1 ) m + 2 ( n − 1 ) m + 3 . . . ( n − 1 ) m + r . . . n m \begin{matrix}\\ 1&2&3&...&r&...&m\\ m+1 & m+2 & m+3 & ...&m+r&...&2m\\ 2m+1 & 2m+2 & 2m+3 & ...&2m+r&...&3m\\ ...&...&...&...&...&...&...\\ (n-1)m+1&(n-1)m+2&(n-1)m+3&...&(n-1)m+r&...&nm \end{matrix} 1m+12m+1...(n1)m+12m+22m+2...(n1)m+23m+32m+3...(n1)m+3...............rm+r2m+r...(n1)m+r...............m2m3m...nm
φ ( n m ) \varphi(nm) φ(nm)为矩阵中与 n m nm nm互质的数的个数
1.因为 gcd ⁡ ( k m + r , m ) = gcd ⁡ ( r , m ) \gcd(km+r,m)=\gcd(r,m) gcd(km+r,m)=gcd(r,m),所以对于每一列,其中的数要么都与 m m m互质,要么都不互质,所以共有 φ ( m ) \varphi(m) φ(m)列的数与 m m m互质.
2.对于每一列,由于 gcd ⁡ ( n , m ) = 1 \gcd(n,m)=1 gcd(n,m)=1,所以 r , m + r , 2 m + r , . . . , ( n − 1 ) m + r r,m+r,2m+r,...,(n-1)m+r r,m+r,2m+r,...,(n1)m+r可以形成一个完整的模 n n n剩余系 Z n Z_n Zn,所以每一列中有 φ ( n ) \varphi(n) φ(n)个与 n n n互质的数.
3.由1、2知,整个矩阵中共有 φ ( n ) φ ( m ) \varphi(n)\varphi(m) φ(n)φ(m)个既与 m m m互质又与 n n n互质的数,而由于 gcd ⁡ ( n , m ) = 1 \gcd(n,m)=1 gcd(n,m)=1,因此对于一个数而言,其与 n , m n,m n,m均互质等价于其与 n m nm nm互质,即与 n m nm nm互质的数共有 φ ( n ) φ ( m ) \varphi(n)\varphi(m) φ(n)φ(m)个,命题得证.

命题2: φ ( n ) = n ∏ p ∣ n , p ∈ P ( 1 − 1 p ) \varphi(n)=n\prod_{p|n,p\in P}(1-\frac 1 p) φ(n)=npn,pP(1p1)

证明:考虑质因数分解 n = ∏ p i a i n=\prod p_i^{a_i} n=piai,显然质因子幂次的乘积项互质,因此 φ ( n ) = ∏ φ ( p i a i ) \varphi(n)=\prod \varphi(p_i^{a_i}) φ(n)=φ(piai)
而我们很容易证明 φ ( p k ) = ( p − 1 ) p k − 1 = ( 1 − 1 p ) p k \varphi(p^k)=(p-1)p^{k-1}=(1-\frac 1 p)p^k φ(pk)=(p1)pk1=(1p1)pk,乘起来就是上面的式子。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值