这题很坑爹,先说说题意:就是找从头开始每k个的最大值,最小值,很容易的想到了rmq,不过我今天是练习单调队列,写完后一交,tle。。。我当时以为有死循环,后面确定没有后就去看discuss,人家说G++超时,c++能过,一交果然A了,百思不得其解,后面想写一下rmq看看超不超,不会写线段树,只能用倍增的dp去做,发现数组过大,爆内存。。。后来在discuss里面发现了优化方法,对了就是滚动数组,看来我还是没有学会学以致用。改完后去交,还是tle这是神马原因,改成C++又过了比单调队列慢一点,代码量和空间都大,还是用单调队列好。
Run ID | User | Problem | Result | Memory | Time | Language | Code Length | Submit Time |
9128755 | 201030720425 | 2823 | Accepted | 7068K | 5485MS | C++ | 1048B | 2011-08-10 19:35:37 |
9128735 | 201030720425 | 2823 | Accepted | 11940K | 5891MS | C++ | 1429B | 2011-08-10 19:34:36 |
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
struct queuey
{
int key,flag;
}q[1000005],qq[1000005];
int r,f,rr,ff;
int insertq(int flag,int key)
{
while(r>f&&key<q[r].key)
r--;
q[++r].flag=flag;
q[r].key=key;
return 1;
}
int insertqq(int flag,int key)
{
while(rr>ff&&key>qq[rr].key)
rr--;
qq[++rr].flag=flag;
qq[rr].key=key;
return 1;
}
void init()
{
r=f=0;
rr=ff=0;
}
int q1[1000005],q2[1000005];
int main()
{
int n,k,key,flag=0;
scanf("%d%d",&n,&k);
init();flag=0;
for(int i=1;i<=k&&i<=n;i++)
{
scanf("%d",&key);
insertq(i,key);
insertqq(i,key);
}
q1[flag]=q[f+1].key;
q2[flag++]=qq[ff+1].key;
for(int i=k+1;i<=n;i++)
{
scanf("%d",&key);
insertq(i,key);
insertqq(i,key);
while(q[f+1].flag<=i-k&&f<r)
f++;
while(qq[ff+1].flag<=i-k&&ff<rr)
ff++;
q1[flag]=q[f+1].key;
q2[flag++]=qq[ff+1].key;
}
for(int i=0;i<flag-1;i++)
printf("%d ",q1[i]);
printf("%d\n",q1[flag-1]);
for(int i=0;i<flag-1;i++)
printf("%d ",q2[i]);
printf("%d\n",q2[flag-1]);
return 0;
}
rmq倍增+滚动数组
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
int dp[1000000][2],n,m,a[1000000],key;
int rmq(int m)
{
for(int i=0;i<n;i++)
dp[i][0]=a[i];
for(int k=1;k<=key;k++)
for(int i=0;i+(1<<k)-1<n;i++)
{
dp[i][k%2]=max(dp[i][(k-1)%2],dp[i+(1<<(k-1))][(k-1)%2]);
}
if(n<m)
{
int ans=max(dp[0][key%2],dp[n-(1<<key)][key%2]);
printf("%d\n",ans);
}
else
{
for(int i=0;i+m-1<n-1;i++)
{
int ans=max(dp[i][key%2],dp[i+m-(1<<key)][key%2]);
printf("%d ",ans);
}
int ans=max(dp[n-m][key%2],dp[n-(1<<key)][key%2]);
printf("%d\n",ans);
}
return 1;
}
int rmq1(int m)
{
for(int i=0;i<n;i++)
dp[i][0]=a[i];
for(int k=1;k<=key;k++)
for(int i=0;i+(1<<k)-1<n;i++)
{
dp[i][k%2]=min(dp[i][(k-1)%2],dp[i+(1<<(k-1))][(k-1)%2]);
}
if(n<m)
{
int ans=min(dp[0][key%2],dp[n-(1<<key)][key%2]);
printf("%d\n",ans);
}
else
{
for(int i=0;i+m-1<n-1;i++)
{
int ans=min(dp[i][key%2],dp[i+m-(1<<key)][key%2]);
printf("%d ",ans);
}
int ans=min(dp[n-m][key%2],dp[n-(1<<key)][key%2]);
printf("%d\n",ans);
}
return 1;
}
int main()
{
int m;
scanf("%d%d",&n,&m);
if(n<m)
key=(int)(log((n)*1.0)/log(2.0));
else
key=(int)(log((m-1)*1.0)/log(2.0));
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
rmq1(m);
rmq(m);
return 0;
}