poj 2823

这题很坑爹,先说说题意:就是找从头开始每k个的最大值,最小值,很容易的想到了rmq,不过我今天是练习单调队列,写完后一交,tle。。。我当时以为有死循环,后面确定没有后就去看discuss,人家说G++超时,c++能过,一交果然A了,百思不得其解,后面想写一下rmq看看超不超,不会写线段树,只能用倍增的dp去做,发现数组过大,爆内存。。。后来在discuss里面发现了优化方法,对了就是滚动数组,看来我还是没有学会学以致用。改完后去交,还是tle这是神马原因,改成C++又过了比单调队列慢一点,代码量和空间都大,还是用单调队列好。

Run IDUserProblemResultMemoryTimeLanguageCode LengthSubmit Time
91287552010307204252823Accepted7068K5485MSC++1048B2011-08-10 19:35:37
91287352010307204252823Accepted
11940K5891MSC++1429B2011-08-10 19:34:36
单调队列

#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
struct queuey
{
	int key,flag;
}q[1000005],qq[1000005];
int r,f,rr,ff;
int insertq(int flag,int key)
{
	while(r>f&&key<q[r].key)
		r--;
	q[++r].flag=flag;
	q[r].key=key;
	return 1;
}
int insertqq(int flag,int key)
{
	while(rr>ff&&key>qq[rr].key)
		rr--;
	qq[++rr].flag=flag;
	qq[rr].key=key;
	return 1;
}
void init()
{
	r=f=0;
	rr=ff=0;
}
int q1[1000005],q2[1000005];
int main()
{
	int n,k,key,flag=0;
	scanf("%d%d",&n,&k);
		init();flag=0;
	for(int i=1;i<=k&&i<=n;i++)
	{
		scanf("%d",&key);
		insertq(i,key);
		insertqq(i,key);
	}
	q1[flag]=q[f+1].key;
	q2[flag++]=qq[ff+1].key;
	for(int i=k+1;i<=n;i++)
	{
		scanf("%d",&key);
		insertq(i,key);
		insertqq(i,key);
		while(q[f+1].flag<=i-k&&f<r)
			f++;
		while(qq[ff+1].flag<=i-k&&ff<rr)
			ff++;
		q1[flag]=q[f+1].key;
		q2[flag++]=qq[ff+1].key;
	}
	for(int i=0;i<flag-1;i++)
		printf("%d ",q1[i]);
	printf("%d\n",q1[flag-1]);
	for(int i=0;i<flag-1;i++)
		printf("%d ",q2[i]);
	printf("%d\n",q2[flag-1]);
	return 0;
}


rmq倍增+滚动数组

#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
int dp[1000000][2],n,m,a[1000000],key;
int rmq(int m)
{
	for(int i=0;i<n;i++)
		dp[i][0]=a[i];
	for(int k=1;k<=key;k++)
		for(int i=0;i+(1<<k)-1<n;i++)
		{
			dp[i][k%2]=max(dp[i][(k-1)%2],dp[i+(1<<(k-1))][(k-1)%2]);
		}
		if(n<m)
		{
		    int ans=max(dp[0][key%2],dp[n-(1<<key)][key%2]);
			printf("%d\n",ans);
		}
		else
		{
			for(int i=0;i+m-1<n-1;i++)
			{
			int ans=max(dp[i][key%2],dp[i+m-(1<<key)][key%2]);
			printf("%d ",ans);
			}
			int ans=max(dp[n-m][key%2],dp[n-(1<<key)][key%2]);
			printf("%d\n",ans);
		}
		return 1;
}
int rmq1(int m)
{
	for(int i=0;i<n;i++)
		dp[i][0]=a[i];
	for(int k=1;k<=key;k++)
		for(int i=0;i+(1<<k)-1<n;i++)
		{
			dp[i][k%2]=min(dp[i][(k-1)%2],dp[i+(1<<(k-1))][(k-1)%2]);
		}
		if(n<m)
		{
		    int ans=min(dp[0][key%2],dp[n-(1<<key)][key%2]);
			printf("%d\n",ans);
		}
		else
		{
			for(int i=0;i+m-1<n-1;i++)
			{
			int ans=min(dp[i][key%2],dp[i+m-(1<<key)][key%2]);
			printf("%d ",ans);
			}
			int ans=min(dp[n-m][key%2],dp[n-(1<<key)][key%2]);
			printf("%d\n",ans);
		}
		return 1;
}
int main()
{
	int m;
	scanf("%d%d",&n,&m);
	if(n<m)
		key=(int)(log((n)*1.0)/log(2.0));
	else
		key=(int)(log((m-1)*1.0)/log(2.0));
	for(int i=0;i<n;i++)
		scanf("%d",&a[i]);
	rmq1(m);
	rmq(m);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值