让我们定义dn为:dn=pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N
(<105),请计算不超过N
的满足猜想的素数对的个数。
输入格式:
输入在一行给出正整数N
。
输出格式:
在一行中输出不超过N
的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
埃氏筛法打表:
代码如下
prime[0]=prime[1]=1;
for(int i=2;i<=n;i++)
{
if(prime[i]==0)
{
isPrime[p++]=i;
for(int j=2*i;j<=n;j=j+i)
{
prime[j]=1;
}
}
}
具体代码:
#include<bits/stdc++.h>
using namespace std;
int prime[10005];
int isPrime[10005];
int main()
{
int p=0,cnt=0,n;
cin>>n;
memset(prime,0,sizeof(prime));
memset(isPrime,0,sizeof(isPrime));
/*埃氏筛法 时间复杂度O(nloglogn)*/
prime[0]=prime[1]=1;
for(int i=2;i<=n;i++)
{
if(prime[i]==0)
{
isPrime[p++]=i;
for(int j=2*i;j<=n;j=j+i)
{
prime[j]=1;
}
}
}
for(int i=0;i<p;i++)
{
//cout<<isPrime[i]<<" ";
if(isPrime[i+1] - isPrime[i] == 2)
{
//cout<<isPrime[i]<<" ";
cnt++;
}
}
cout<<cnt;
return 0;
}