Lesson 2

有监督学习算法:

1. 线性回归(Linear Regression

训练数据->训练算法->产生一个合理的假设(H

我们如何使用训练数据产生一个合理的假设?

首先这个假设是已知形式的,然后我们通过训练数据估计其中的参数,估计得准则就是最小化平方误差。

最小化平方误差的方法:

1. Search Algorithm

Basic Idea is below:

Start with some theta(say theta = vector 0)

Keep changing theta to reduce J(theta) 

常用的算法:梯度下降法(Gradient Descent

Batch gradient descent

The term batch refers to the fact that on every step of gradient descent you're 

going to look at your entire training set. You're going to perform a sum over your M 

training examples.  

Incremental gradient descent(当训练数据集很大的时候)

2. 要最小化J(theta),直接对其进行矩阵求导等于零,即可得到theta,此方法不像上面的方法需要迭代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值