有监督学习算法:
1. 线性回归(Linear Regression)
训练数据->训练算法->产生一个合理的假设(H)
我们如何使用训练数据产生一个合理的假设?
首先这个假设是已知形式的,然后我们通过训练数据估计其中的参数,估计得准则就是最小化平方误差。
最小化平方误差的方法:
1. Search Algorithm
Basic Idea is below:
n Start with some theta(say theta = vector 0)
n Keep changing theta to reduce J(theta)
常用的算法:梯度下降法(Gradient Descent)
l Batch gradient descent
The term batch refers to the fact that on every step of gradient descent you're
going to look at your entire training set. You're going to perform a sum over your M
training examples.
n Incremental gradient descent(当训练数据集很大的时候)
2. 要最小化J(theta),直接对其进行矩阵求导等于零,即可得到theta,此方法不像上面的方法需要迭代。