动态规划---背包问题

1. 0-1背包问题

w [ i ] w[i] w[i]为第 i i i个物品的重量, v [ i ] v[i] v[i]为第 i i i个物品的价值,每种物品只有一个
d p [ i ] [ j ] = M a t h . m a x ( d p [ i − 1 ] [ j ] , v [ i ] + d p [ i − 1 ] [ j − w [ i ] ] ) dp[i][j] = Math.max(dp[i-1][j], v[i] + dp[i-1][j-w[i]]) dp[i][j]=Math.max(dp[i1][j],v[i]+dp[i1][jw[i]])

class Pack01 {
    public int knapSack(int[] w, int[] v, int cap) { //未优化
        int num = w.length;
        if (num == 0 || cap == 0)
            return 0;
        int[][] dp = new int[num][cap+1];
        for (int i = 0; i <= cap; i++) {
            dp[0][i] = w[0]<=i ? v[0] : 0;  //先初始化放入第一个物品
        }
        for (int i = 1; i < num; i++) {
            for (int j = 0; j <=cap ; j++) {
                dp[i][j] = dp[i-1][j];  //默认为不放当前第i个物品
                if (w[i] <= j)
                    dp[i][j] = Math.max(dp[i][j], v[i] + dp[i-1][j-w[i]]);
            }
        }
        return dp[num-1][cap];
    }
    public int youhua(int[] w, int[] v, int cap) {  //优化后
        int num = w.length;
        int[] dp = new int[cap+1];
        for (int i = 0; i < num; i++) {
            for (int j = cap; j >= w[i]; j--) {    //从最后一个背包开始装
                dp[j] = Math.max(dp[j], dp[j-w[i]] + v[i]);
            }
        }
        return dp[cap];
    }
    public static void main(String[] args) {
        int[] w = {2, 1, 3, 2};
        int[] v = {12, 10, 20, 15};
        Pack01 pack01 = new Pack01();
        System.out.println(pack01.knapSack(w, v, 5));
        System.out.println(pack01.youhua(w, v, 5));
    }
}

2. 完全背包问题

w [ i ] w[i] w[i]为第 i i i个物品的重量, v [ i ] v[i] v[i]为第 i i i个物品的价值,每种物品的数量无限。
d p [ i + 1 ] [ j ] = M a t h . m a x ( d p [ i + 1 ] [ j ] , d p [ i ] [ j − k ∗ w [ i ] ] + k ∗ v [ i ] ) ; dp[i+1][j]=Math.max(dp[i+1][j],dp[i][j - k * w[i]] + k * v[i]); dp[i+1][j]=Math.max(dp[i+1][j],dp[i][jkw[i]]+kv[i]);其中 0 < = k < = j / w [ i ] 0<=k<=j/w[i] 0<=k<=j/w[i]为第 i i i种物品取的个数。

class Packwq {
    public int wqpack(int[] w, int[] v, int cap) {
        //dp[i][j] = max{dp[i-1][t - w[i] * k] + v[i] * k}; (0 <= k * w[i] <= j)
        int[][] dp = new int[v.length+1][cap+1];
        for(int i = 0; i < v.length; i++) {
            for(int j = 0; j <= cap; j++) {
                for(int k=0; k * w[i] <= j; k++)
                    dp[i+1][j]=Math.max(dp[i+1][j],dp[i][j - k * w[i]] + k * v[i]);
            }
        }
        return dp[v.length][cap];
    }
    public int youhua(int[] w, int[] v, int cap) {	//优化后的算法
        //dp[j] = max(dp[j], dp[j-w[i]]+v[i])
        int[] dp = new int[cap+1];
        for (int i = 0; i < v.length; i++) {
            for (int j = w[i]; j <= cap; j++) {
                dp[j] = Math.max(dp[j], dp[j-w[i]] + v[i]);
            }
        }
        return dp[cap];
    }
    public static void main(String[] args) {
        int[] w = {2, 1, 3, 2};
        int[] v = {12, 10, 20, 15};
        Packwq packwq = new Packwq();
        System.out.println(packwq.wqpack(w, v, 5));
        System.out.println(packwq.youhua(w, v, 5));
    }
}

3. 多重背包问题

类似于完全背包,只不过多一个判断条件 k < = m [ i ] k<=m[i] k<=m[i] k k k为第 i i i个物品放入的数量。

class Packdc {
    public int dcpack(int[] w, int[] v, int[] m, int cap) {
        int[][] dp = new int[v.length+1][cap+1];
        for (int i = 0; i < v.length; i++) {
            for (int j = 0; j <= cap; j++) {
                for (int k = 0; k<=m[i] && k*w[i]<=j ; k++) {
                    dp[i+1][j] = Math.max(dp[i+1][j], dp[i][j - k * w[i]] + k * v[i]);
                }
            }
        }
        return dp[v.length][cap];
    }
    public int youhua(int[] w, int[] v, int[] m, int cap) {
        int[] dp = new int[cap+1];
        for (int i = 0; i < v.length; i++) {
            int k = 1;
            for (int j = w[i]; k<=m[i] && j<=cap ; j++) {
                dp[j] = Math.max(dp[j], dp[j-w[i]] + v[i]);
                k++;
            }
        }
        return dp[cap];
    }
    public static void main(String[] args) {
        int[] w = {2, 1, 3, 2};
        int[] v = {12, 10, 20, 15};
        int[] m = {2, 3, 3, 6};
        Packdc packdc = new Packdc();
        System.out.println(packdc.dcpack(w, v, m, 5));
        System.out.println(packdc.youhua(w, v, m, 5));
    }
}

4. 最少货币问题

arr为货币构成数组,aim为目标钱数,构建dp[arr.length][aim+1],dp[0…arr.length-1][0] === 0; 找不开的都为Integer.MAX_VALUE,先放第一行。
其中 d p [ i ] [ j ] = M a t h . m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − a r r [ i ] ] + 1 ] ) dp[i][j] = Math.min(dp[i-1][j], dp[i][j-arr[i]]+1]) dp[i][j]=Math.min(dp[i1][j],dp[i][jarr[i]]+1])

public class MinMoney {
    public int minConins1(int[] arr, int aim){  //未优化
        if(arr == null || arr.length == 0 || aim < 0){
            return -1;
        }
        int[][] dp = new int[arr.length][aim+1];
        int max = Integer.MAX_VALUE;
        //设置第一行
        for(int j=1; j <= aim; j++){
            dp[0][j] = max;
            if (j % arr[0] == 0) {
                dp[0][j] = j / arr[0];
            }
//            if(j-arr[0] >= 0 && dp[0][j-arr[0]] != max ){
//                dp[0][j] = dp[0][j-arr[0]] + 1;
//            }
        }
        int left = 0;
        for(int i=1; i < arr.length; i++){
            for(int j=1; j <=aim; j++){
                left = max;
                if(j-arr[i] >=0 && dp[i][j-arr[i]] != max){
                    left = dp[i][j-arr[i]] + 1;
                }
                dp[i][j] = Math.min(left, dp[i-1][j]);
            }
        }
        return dp[arr.length-1][aim] != max ? dp[arr.length-1][aim] : -1;
    }
    public int youhua(int[] arr, int aim) { //优化后
        if (arr == null || arr.length == 0)
            return -1;
        int[] dp = new int[aim+1];
        int max = Integer.MAX_VALUE;
        //先放第一行
        for (int i = 1; i <= aim; i++) {
            dp[i] = max;
            if (i % arr[0] == 0)
                dp[i] = i / arr[0];
        }
        int tmp = max;
        for (int i = 1; i < arr.length; i++) {
            for (int j = 1; j <= aim; j++) {
                tmp = max;
                if (j - arr[i] >= 0 && dp[j-arr[i]] != max)
                    tmp = dp[j-arr[i]] + 1;
                dp[j] = Math.min(dp[j], tmp);
            }
        }
        return dp[aim];
    }
    public static void main(String[] args) {
        int[] arr = {5,2,3,1};
        int aim = 5;
        MinMoney m = new MinMoney();
        System.out.println(m.youhua(arr, aim));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值