【SDOI2010】古代猪文(数论)

题意

给出 N , G ( 1 ≤ N , G ≤ 1 0 9 ) N,G(1\le N,G \le 10^9) N,G(1N,G109),求 G ∑ k ∣ N C N k    m o d    999911659 G^{\sum_{k|N}C_N^k}\;mod\;999911659 GkNCNkmod999911659

思路

根据欧拉定理(或者费马小定理),我们需要求 ∑ k ∣ N C N k    m o d    999911658 \sum_{k|N}C_N^k\;mod\;999911658 kNCNkmod999911658,而模数是个合数。

一上来就想套Lucas?

慢着。把模数分解质因数: 999911658 = 2 ∗ 3 ∗ 4679 ∗ 35617 999911658=2*3*4679*35617 999911658=23467935617,和一般拓展卢卡斯不同的是,所有质因数的指数都是1,所以可以直接用卢卡斯定理代替拓展卢卡斯麻烦的阶乘取模。这算是一个小技巧吧,要是下次碰到给定而不是输入的模数,那就尝试这样化简题目。

最后注意一下特判,欧拉定理成立的条件是 G G G与模数互质。因为保证N大于0,所以不可能有指数为0的情况,所以只要 999911659 ∣ G 999911659\mid G 999911659G就输出0。

有这样一组数据999911657 999911659,使得指数在取模之后为0,不特判答案将会是1。

注意

  1. 欧拉定理的条件

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int Mod = 999911659, phi = 999911658;
const int mod[4] = {2, 3, 4679, 35617}, N = 35618;
int n, g, ans, fac[4][N], ifac[4][N];

int fpow(int x, int y, int p){
	int ret = 1;
	while (y){
		if (y & 1) ret = 1LL * ret * x % p;
		x = 1LL * x * x % p;
		y >>= 1;
	}
	return ret;
}

int inv(int x, int p){
	return fpow(x, p-2, p);
}

void init(int id, int p)
{
	fac[id][0] = 1;
	for (int i = 1; i < p; ++ i)
		fac[id][i] = 1LL * fac[id][i-1] * i % p;
	ifac[id][p-1] = inv(fac[id][p-1], p);
	for (int i = p-2; i >= 0; -- i)
		ifac[id][i] = 1LL * ifac[id][i+1] * (i+1) % p;
}

int Lucas(int n, int m, int id, int p){
	if (n < p && m < p) return 1LL * fac[id][n] * ifac[id][m] % p * ifac[id][n-m] % p;
	return 1LL * Lucas(n / p, m / p, id, p) * Lucas(n % p, m % p, id, p) % p;
}

int CRT(int a, int b, int p){
	return 1LL * inv(p / b, b) * (p / b) % p * a % p;
}

int solve(int n, int m, int p)
{
	int ret = 0;
	for (int i = 0; i < 4; ++ i)
		(ret += CRT(Lucas(n, m, i, mod[i]), mod[i], phi)) %= p;
//	cout << n << " " << m << " " << ret << endl;
	return ret;
}

int main()
{
	for (int i = 0; i < 4; ++ i)
		init(i, mod[i]);
	cin >> n >> g;
	if (g % Mod == 0){
		puts("0");
		return 0;
	}
	ans = 0;
	for (int i = 1; i * i <= n; ++ i)
		if (n % i == 0){
			(ans += solve(n, i, phi)) %= phi;
			if (i * i != n)
				(ans += solve(n, n / i, phi)) %= phi;
		}
	ans = fpow(g, ans, Mod);
	cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值