poj 3694 Network(边双+并查集)

题意

一张无向联通图,每次询问加一条边,求桥的个数。

题解

算法1:边双缩点之后的图肯定是一棵树,每次在树上连一条边会形成一个环,所以缩点重建图之后每次求LCA更新就好了。

算法2:可以发现 l o w [    ] low[\;] low[]数组的意义有点类似于并查集, l o w [ u ] low[u] low[u]表示u走非树边能到达的最高点,所以如果 l o w [ x ] = y , l o w [ y ] = z low[x]=y,low[y]=z low[x]=y,low[y]=z,那么 l o w [ x ] = z low[x]=z low[x]=z。所以将 l o w [ u ] low[u] low[u]的意义由最小时间戳改为搜索树上最浅的点编号,每次更新将两个点合并到LCA上就行了,不需要重新建图。

算法2代码:非常短,连100行都没有到

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N = 1e6+10;
const int M = 6e6+10;
int n, m, q, cs, e, point[N];
struct EDGE{
	int nxt, v;
}edge[M];
int dfn[N], low[N], idx, dpt[N], fa[N], tot;

void add_edge(int u, int v)
{
	edge[++e] = (EDGE){point[u], v};
	point[u] = e;
}

int Min(int x, int y)
{
	return (dfn[x] > dfn[y] ? y : x);
}

void Tarjan(int u, int in_e)
{
	dfn[u] = ++idx;
	low[u] = u;
	for (int i = point[u]; i != -1; i = edge[i].nxt){
		if (i == in_e){
			continue;
		}
		int v = edge[i].v;
		if (!dfn[v]){
			fa[v] = u;
			dpt[v] = dpt[u]+1;
			Tarjan(v, i^1);
			low[u] = Min(low[u], low[v]);
		}
		else{
			low[u] = Min(low[u], v);
		}
	}
}

int Find(int u)
{
	if (low[u] == u) return u;
	return low[u] = Find(low[u]);
}

void Union(int v, int u)
{
	v = Find(v);
	u = Find(u);
	if (dpt[v] <= dpt[u]) return;
	low[v] = u;
	tot--;
}

int main()
{
	cs = 0;
	while (scanf("%d%d", &n, &m) == 2 && n+m){
		printf("Case %d:\n", ++cs);
		memset(point, -1, sizeof(point)); e = -1;
		for (int i = 1; i <= m; i++){
			int x, y;
			scanf("%d%d", &x, &y);
			add_edge(x, y);
			add_edge(y, x);
		}
		dpt[1] = idx = 0;
		memset(dfn, 0, sizeof(dfn));
		Tarjan(1, -1);
		tot = -1;
		for (int i = 1; i <= n; i++)
			if (low[i] == i){
				tot++;
			}
		scanf("%d", &q);
		for (int i = 1; i <= q; i++){
			int x, y;
			scanf("%d%d", &x, &y);
			x = Find(x);
			y = Find(y);
			while (x != y){
				if (dpt[x] < dpt[y]){
					swap(x, y);
				}
				Union(x, fa[x]);
				x = Find(x);
			}
			printf("%d\n", tot);
		}
		printf("\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值