poj 2942 Knights of the Round Table(点双+奇环)

本文探讨了在图论中检测点是否存在于奇数长度环上的算法。通过点双概念和深度优先搜索(DFS),文章详细解释了如何找出图中不在任何奇数长度环上的点的数量,包括初始化数据结构、遍历图以及判断奇环存在的具体步骤。
摘要由CSDN通过智能技术生成

题意

求图上有多少点不存在任意一个奇环上。

思路

首先有一个 很容易发现 的性质:如果一个点双中有一个奇环,那么整个点双的点都至少在一个奇环上。反正我是看了蓝书才知道的。

然后算法非常简单,求一遍点双,每个点双找奇环。

注意点双和Dfs求奇环的打法,还有vector很容易忘记初始化。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int N = 2010;
const int M = 6e6+10;
int n, m, e, point[N];
bool ban[N][N];
struct EDGE{
    int nxt, v;
}edge[M];
int dfn[N], low[N], idx, stk[N], st, rt, dccn, col[N], ans;
vector<int> dcc[N];
bool now[N], odd[N];

void add_edge(int u, int v)
{
    edge[++e] = (EDGE){point[u], v};
    point[u] = e;
}

void Tarjan(int u)
{
    dfn[u] = low[u] = ++idx;
    if (rt == u && point[u] == -1){
        dccn++;
        dcc[dccn].clear();
        dcc[dccn].push_back(u);
        return;
    }
    stk[++st] = u;
    for (int i = point[u]; i != -1; i = edge[i].nxt){
        int v = edge[i].v;
        if (!dfn[v]){
            Tarjan(v);
            low[u] = min(low[u], low[v]);
            if (low[v] >= dfn[u]){
                dccn++;
                dcc[dccn].clear();
                dcc[dccn].push_back(u);
                while (1){
                    int w = stk[st];
                    dcc[dccn].push_back(w);
                    st--;
                    if (w == v){ // 做到子树全部弹出为止,不是u,不然v的兄弟也会被弹出
                        break;
                    }
                }
            }
        }
        else{
            low[u] = min(low[u], dfn[v]);
        }
    }
}

bool Dfs(int u)
{
    for (int i = point[u]; i != -1; i = edge[i].nxt){
        int v = edge[i].v;
        if (!now[v]){
            continue;
        }
        if (col[v] && col[v] == col[u]){
            return true;
        }
        else if (!col[v]){
            col[v] = 3-col[u];
            if (Dfs(v)){
                return true;
            }
        }
    }
    return false;
}

int main()
{
    while (scanf("%d%d", &n, &m) == 2 && n+m){
        memset(ban, 0, sizeof(ban));
        for (int i = 1; i <= m; i++){
            int x, y;
            scanf("%d%d", &x, &y);
            ban[x][y] = ban[y][x] = 1;
        }
        memset(point, -1, sizeof(point)); e = -1;
        for (int i = 1; i <= n; i++)
            for (int j = i+1; j <= n; j++)
                if (!ban[i][j]){
                    add_edge(i, j);
                    add_edge(j, i);
                }
        memset(dfn, 0, sizeof(dfn));
        idx = st = dccn = 0;
        for (int i = 1; i <= n; i++)
            if (!dfn[i]){
                rt = i;
                Tarjan(i);
            }
        memset(odd, 0, sizeof(odd));
        for (int i = 1; i <= dccn; i++){
            memset(now, 0, sizeof(now));
            memset(col, 0, sizeof(col));
            for (int j = 0, sz = dcc[i].size(); j < sz; j++)
                now[dcc[i][j]] = 1; // cout << dcc[i][j] << " ";
            col[dcc[i][0]] = 1;
            if (Dfs(dcc[i][0])){
                // cout << "!" << endl;
                for (int j = 0, sz = dcc[i].size(); j < sz; j++)
                    odd[dcc[i][j]] = 1;
            }
        }
        ans = 0;
        for (int i = 1; i <= n; i++)
            if (!odd[i]){
                ans++;
            }
        printf("%d\n", ans);
    }
    return 0;
}

/*
5 10
3 1
2 4
2 1
1 1
1 3
1 1
2 1
1 3
1 1
4 3
------------
0
点双求错了还能A掉讨论的大部分样例
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值