[学习笔记]多项式的整除、取模、多点求值和插值及常系数线性递推

一、开头

( WC2019 神犇协会)
undefeatedKO : NOI2017 的题大家都 AK 了吗?
All : AK 了!
ION :我们穿越到 2019 年的 WC 怎么样?
olis :好啊!听说一个弱鸡 xyz32768 要来 WC ,我们一到就把他 D 一遍,这样他 WC2019 不爆零才怪呢!
( WC2019 )
VFN :我们刚刚 A 掉了分身术这题。考虑到你比较菜,我就不用这道题考你了,我换成 Day1 T3 的泳池,如果你做不出来,你就肯定会在 WC2019 我们精心出的试题面前爆零!
xyz32768 :什么??????
NFV :哈哈,没想到你这么菜呀,那我再降低下要求:我告诉你这道题的算法是:常系数线性递推。
xyz32768 :什么?矩乘快速幂??????
phantom : 你这个弱鸡居然连多项式整除和取模都不会,明天你爆零定了!再见!
xyz32768 : 算了,爆零就爆零吧,反正我永远都学不会任何多项式算法。
pool : 没想到 xyz32768 你菜得超出我的眼界了,再见,爆零蒟蒻!

二、前置芝士:多项式求逆

多项式求逆

三、多项式的整除与取模

一个 n n n 次多项式 F ( x ) F(x) F(x) m m m 次多项式 G ( x ) G(x) G(x) ,求多项式 Q ( x ) Q(x) Q(x) R ( x ) R(x) R(x) ,满足:
(1) Q ( x ) Q(x) Q(x) 次数为 n − m n-m nm R ( x ) R(x) R(x) 次数为 m − 1 m-1 m1
(2) F ( x ) = Q ( x ) G ( x ) + R ( x ) F(x)=Q(x)G(x)+R(x) F(x)=Q(x)G(x)+R(x)
这就是求 Q ( x ) Q(x) Q(x) F ( x ) F(x) F(x) G ( x ) G(x) G(x) 整除得到的多项式,且 R ( x ) = F ( x )   m o d   G ( x ) R(x)=F(x)\bmod G(x) R(x)=F(x)modG(x)
下面进入推式子环节。
F ( 1 x ) = Q ( 1 x ) G ( 1 x ) + R ( 1 x ) F(\frac 1x)=Q(\frac 1x)G(\frac 1x)+R(\frac 1x) F(x1)=Q(x1)G(x1)+R(x1)
两边同乘 x n x^n xn
F R ( x ) = Q R ( x ) G R ( x ) + R R ( x ) x n − m + 1 F_R(x)=Q_R(x)G_R(x)+R_R(x)x^{n-m+1} FR(x)=QR(x)GR(x)+RR(x)xnm+1
其中 F R ( x ) F_R(x) FR(x) 表示 F ( x ) F(x) F(x) 的系数翻转,即 F R ( x ) F_R(x) FR(x) i i i 次项系数为 F ( x ) F(x) F(x) n − i n-i ni 次项系数。
F R ( x ) ≡ Q R ( x ) G R ( x ) (   m o d   x n − m + 1 ) F_R(x)\equiv Q_R(x)G_R(x)(\bmod x^{n-m+1}) FR(x)QR(x)GR(x)(modxnm+1)
Q R ( x ) ≡ F R ( x ) × G R − 1 ( x ) (   m o d   x n − m + 1 ) Q_R(x)\equiv F_R(x)\times G^{-1}_R(x)(\bmod x^{n-m+1}) QR(x)FR(x)×GR1(x)(modxnm+1)
需要求 G R ( x ) G_R(x) GR(x) n − m + 1 n-m+1 nm+1 的逆。
至此,我们得到了整除的结果。
取模则更简单:
R ( x ) = F ( x ) − Q ( x ) G ( x ) R(x)=F(x)-Q(x)G(x) R(x)=F(x)Q(x)G(x)
多项式取模的重要应用:如果在一定的条件下 G ( x ) G(x) G(x) 0 0 0 ,那么将计算 F ( x ) F(x) F(x) 改为计算 F ( x )   m o d   G ( x ) F(x)\bmod G(x) F(x)modG(x) 有时可以有效地降低复杂度。

四、应用:多项式多点求值

给定一个 n n n 次多项式 F ( x ) F(x) F(x) m m m 个值 x 1 , x 2 , … , x m x_1,x_2,\dots,x_m x1,x2,,xm ,求出 F ( x 1 ) F(x_1) F(x1) F ( x 2 ) F(x_2) F(x2) … \dots F ( x m ) F(x_m) F(xm)
采用分治的算法。取 m i d = ⌊ m 2 ⌋ mid=\lfloor\frac m2\rfloor mid=2m
先计算 G 1 ( x ) = ∏ i = 1 m i d ( x − x i ) G_1(x)=\prod_{i=1}^{mid}(x-x_i) G1(x)=i=1mid(xxi) G 2 ( x ) = ∏ i = m i d + 1 m ( x − x i ) G_2(x)=\prod_{i=mid+1}^m(x-x_i) G2(x)=i=mid+1m(xxi)
那么:
(1)对于任意的 1 ≤ k ≤ m i d 1\le k\le mid 1kmid
G 1 ( x k ) = ( x k − x k ) ∏ i = 1 , i ≠ k m i d ( x k − x i ) = 0 G_1(x_k)=(x_k-x_k)\prod_{i=1,i\ne k}^{mid}(x_k-x_i)=0 G1(xk)=(xkxk)i=1,i̸=kmid(xkxi)=0
(2)对于任意的 m i d &lt; k ≤ m mid&lt;k\le m mid<km
G 2 ( x k ) = ( x k − x k ) ∏ i = m i d + 1 , i ≠ k m ( x k − x i ) = 0 G_2(x_k)=(x_k-x_k)\prod_{i=mid+1,i\ne k}^m(x_k-x_i)=0 G2(xk)=(xkxk)i=mid+1,i̸=km(xkxi)=0
所以可以分别将 F ( x ) F(x) F(x) 转换成 F ( x ) &VeryThinSpace; m o d &VeryThinSpace; G 1 ( x ) F(x)\bmod G_1(x) F(x)modG1(x) F ( x ) &VeryThinSpace; m o d &VeryThinSpace; G 2 ( x ) F(x)\bmod G_2(x) F(x)modG2(x)
所以,设 c a l c ( F ( x ) , S ) calc(F(x),S) calc(F(x)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值