BZOJ、UOJ、LOJ
文章平均质量分 75
xyz32768
菜鸡菜鸡菜**
展开
-
[BZOJ4518][SDOI2016]征途(斜率优化DP)
1、基本思路首先拆开方差的式子得到: 1m∑mi=1(xi−x¯)2=1m∑mi=1(x2i+x¯2−2x¯xi)\frac{1}{m}\sum_{i=1}^m(x_i-\bar{x})^2=\frac{1}{m}\sum_{i=1}^m(x_i^2+\bar{x}^2-2\bar{x}x_i) =∑mi=1x2i−x¯∑mi=1xim=\frac{\sum_{i=1}^mx_i^2-\bar{原创 2017-10-29 15:33:46 · 413 阅读 · 0 评论 -
[BZOJ2425][HAOI2010]计数(组合数学)
首先,统计出数字串中0,1,...,90,1,...,9出现的次数cnt[0],cnt[1],...,cnt[9]cnt[0],cnt[1],...,cnt[9]。 先考虑用其中的所有非零数字能构成多少个允许含前导00的lenlen位数。 可以想到,现在lenlen位中选出cnt[1]cnt[1]位设为11,然后在剩下的len−cnt[1]len-cnt[1]位中选出cnt[2]cnt[2]位设原创 2017-10-29 22:00:30 · 264 阅读 · 0 评论 -
[BZOJ4517][SDOI2016]排列计数(排列组合)
先考虑怎样求出11到nn的所有排列中,错排(一个11到nn的排列A[1],A[2],...,A[n]A[1],A[2],...,A[n]的每一个值都有i≠A[i]i\neq A[i])的个数DnD_n。 先考虑DnD_n的容斥求法:Dn=Ann−An−1n+An−2n−An−3n+...+(−1)nA0nD_n=A_n^n-A_n^{n-1}+A_n^{n-2}-A_n^{n-3}+...+(-1原创 2017-10-28 19:52:51 · 322 阅读 · 0 评论 -
[BZOJ1951][SDOI2010]古代猪文(Lucas定理+中国剩余定理)
看到题目和题面想笑……不多说了,进入正题。 题意:求 G∑d|NCdNmod999911659G^{\sum_{d|N}C_N^d}\mod 999911659 的值。 首先,可以根据费马小定理得出,原式和 G(∑d|NCdN)mod999911658G^{(\sum_{d|N}C_N^d)\mod 999911658} 在模999911659999911659意义下是同余的。 而只要原创 2017-10-31 21:23:39 · 490 阅读 · 0 评论 -
[BZOJ1880][SDOI2009]Elaxia的路线(SPFA+拓扑排序+DP)
首先,分别以x1,y1,x2,y2x1,y1,x2,y2为源点分别跑44次SPFA,记dis<x,y>dis<x,y>为xx到yy的最短路,val<x,y>val<x,y>为边<x,y><x,y>的权值。 跑完最短路后,构建出一个新的有向图,只包含x1x1到y1y1的最短路。 判断一条边<x,y><x,y>是否在最短路上很简单,即判断是否满足: dis<x1,x>+val<x,y>+dis<y原创 2017-10-31 21:45:39 · 247 阅读 · 0 评论 -
[BZOJ3124][SDOI2013]直径(DFS)
先DP求一遍直径。下面记f[u]f[u]和g[u]g[u]分别为自节点uu向下延伸到叶子节点的最长链和次长链的长度,并把所有满足「f[u]+g[u]f[u]+g[u]的值等于该树直径」的节点uu标记为关键点。 首先给出一个性质:不存在深度相同的关键点,并且深度小的关键点是深度大的关键点的祖先。 证明:如果有两个关键点不满足上述限制,那么这两个关键点对应的两条直径一定不重叠。此时就一定存在一条比直原创 2017-10-31 22:09:21 · 246 阅读 · 0 评论 -
[BZOJ2005][NOI2010]能量采集(莫比乌斯反演)
题意:给定n,mn,m,求∑ni=1∑mi=1(2gcd(i,j)−1)\sum_{i=1}^n\sum_{i=1}^m(2\gcd(i,j)-1)。 容易推出,原式可化为2∑ni=1∑mi=1gcd(i,j)−nm2\sum_{i=1}^n\sum_{i=1}^m\gcd(i,j)-nm。 而关键就是求∑ni=1∑mi=1gcd(i,j)\sum_{i=1}^n\sum_{i=1}^m\gcd原创 2017-10-24 21:14:17 · 246 阅读 · 0 评论 -
[BZOJ2049][SDOI2008]洞穴勘测(动态树LCT)
LCT模板题。 对于Connect操作,就执行Link(u,v)Link(u,v),即连边(u,v)(u,v)。 对于Destroy操作,就执行Cut(u,v)Cut(u,v),即删边(u,v)(u,v)。 对于Query操作,就判断是否FindRoot(u)==FindRoot(v)FindRoot(u)==FindRoot(v),即判断是否在同一个连通块内。 代码:#include <c原创 2017-10-22 10:29:15 · 199 阅读 · 0 评论 -
[BZOJ2338][HNOI2011]数矩形(计算几何)
考虑两条线段能够成为矩形的两对角线的条件:两条线段互相平分且相等。 首先预处理出所有点两两构成线段的中点和长度,然后以中点的xxx坐标为第一关键字,中点的yyy坐标为第二关键字,线段长度为第三关键字将线段排序。 这样,所有中点坐标和长度都相等的线段集合就是一段连续的区间。 在合法的集合内,可枚举两条线段,用叉积判断面积。 Q:为什么这样复杂度是对的? A:最坏情况下,有kkk条线段交于一...原创 2017-10-21 23:12:24 · 243 阅读 · 0 评论 -
[BZOJ1041][HAOI2008]圆上的整点(数论)
为了考虑方便,把问题视为以下模型: 对于任意的1≤x<r1\leq x<r,求出满足r2−x2r^2-x^2是完全平方数的xx的个数,并把结果加11(坐标轴上的整点)再乘44(44个象限)。 求xx的个数仍然是暴力统计,但是此题可以利用r2−x2r^2-x^2是完全平方数的必要条件,缩小枚举范围。 怎样求出这个必要条件呢?首先,把r2−x2r^2-x^2化为(r+x)(r−x)(r+x)(r-原创 2017-10-20 21:01:26 · 338 阅读 · 0 评论 -
[BZOJ4816][SDOI2017]数字表格(莫比乌斯反演)
容易看出,此题用莫比乌斯反演求解。 首先,要把∏ni=1∏mj=1f[gcd(i,j)]\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]换一个方向去思考,即不枚举i,ji,j,而是枚举d=gcd(i,j)d=\gcd(i,j)。可以得到,在这个表格里,f[d]f[d]出现的次数就是∑ni=1∑mj=1[gcd(i,j)=d]\sum_{i=1}^n\sum_{j=1}^原创 2017-10-19 20:29:16 · 290 阅读 · 0 评论 -
[BZOJ3994][SDOI2015]约数个数和(莫比乌斯反演)
首先介绍一个性质:∑Ni=1∑Mj=1σ0(ij)=∑Ni=1∑Mj=1⌊Ni⌋⌊Mj⌋[gcd(i,j)=1]\sum_{i=1}^N\sum_{j=1}^M\sigma_0(ij)=\sum_{i=1}^N\sum_{j=1}^M\lfloor\frac{N}{i}\rfloor\lfloor\frac{M}{j}\rfloor[\gcd(i,j)=1]。 证明为: 先设上式等号左边为f(N原创 2017-10-18 23:33:23 · 282 阅读 · 0 评论 -
[BZOJ2186][SDOI2008]沙拉公主的困惑(数论)
设f[i]f[i]表示[1,i!][1,i!]的数中与i!i!互质的数的个数。边界为f[0]=1f[0]=1。 首先介绍一个性质:当(a,x)=1(a,x)=1时,(k∗x+a,x)=1(k*x+a,x)=1。 当ii不为质数时,(i−1)!(i-1)!就已经包含了ii的所有质因子。所以这时候就变成了求[1,i!][1,i!]中与(i−1)!(i-1)!互质的数的个数。可以发现,因为i!=i∗(原创 2017-10-15 16:33:51 · 226 阅读 · 0 评论 -
[BZOJ4195][NOI2015]程序自动分析(离散化+并查集)
首先将所有的ii和jj离散化。 先处理相等的条件。因为相等具有传递性,所以这里用并查集维护相等关系,在同一个连通块中的变量全部相等。即连边(i,j)(i,j)。 然后处理不等的条件。可以发现,如果ii和jj在同一个连通块里,那么就同时存在xi=xjx_i=x_j和xi≠yix_i\neq y_i,这显然是矛盾的。所以对于所有的不等条件,如果存在一个条件的ii和jj在同一个连通块里,那么不可以被满原创 2017-10-15 16:00:01 · 287 阅读 · 0 评论 -
[BZOJ1486][HNOI2009]最小圈(二分答案+负环)
看到“平均值”,可以想到先二分圈的平均值的最小值,记当前答案为midmid。 这时候,把所有的边权都减掉midmid,这样判断原图中是否包含有平均值小于等于midmid的圈,就转化成了判断新图中是否包含有负环。用SPFA或DFS判断负环即可。 代码: #include <cmath>#include <cstdio>#include <cstring>#include <iostream>原创 2017-10-15 13:11:01 · 308 阅读 · 0 评论 -
[BZOJ4785][ZJOI2017]树状数组(树套树)
可以发现,这个树状数组实际上求的是后缀和。而这样子求出的区间和,只有l−1l-1和rr两个点的差别。于是第二问就转化成A[l−1]=A[r]A[l-1]=A[r]的概率,但是要特判l=1l=1的情况(l=1l=1时正确的概率为∑ri=1A[i]≡∑ni=rA[i](mod2)\sum_{i=1}^rA[i]\equiv\sum_{i=r}^nA[i](\mod 2)的概率)。 这里设f(i,j)f原创 2017-10-15 12:57:08 · 656 阅读 · 3 评论 -
[BZOJ3143][HNOI2013]游走(高斯消元解期望方程)
可以假设,如果知道了每一条边的期望经过次数w(u,v)w_{(u,v)},就可以排序后贪心分配了。以下dud_u为节点uu的度。 设fuf_u为节点uu的期望经过次数,则容易得到: w(u,v)=fudu+fvdvw_{(u,v)}=\frac{f_u}{d_u}+\frac{f_v}{d_v}。 那么怎样求fuf_u呢? 简单的一个想法,设vv为与uu相邻的点集: fu=∑fvdvf_u原创 2017-10-12 22:19:55 · 297 阅读 · 0 评论 -
[BZOJ2337][HNOI2011]XOR和路径(高斯消元解期望方程)
先来介绍一下期望方程: 考虑问题:一个NN个点MM条边的无向图,边有权值,到每个节点都会等概率地选择与这个点关联的下一个点走。求从11走到NN的期望路径权值和。 考虑DP。设f[u]f[u]为从uu到NN的期望,dud_u为uu的度,vv为与uu有边相连的点集,w(u,v)w(u,v)表示边(u,v)(u,v)的权值,可以发现: f[u]=1du∑(w(u,v)+f[v]),u<>Nf[u]=原创 2017-10-12 22:03:34 · 395 阅读 · 0 评论 -
[BZOJ2705][SDOI2012]Longge的问题(欧拉函数)
没事刷刷水题.. 可以看到,虽然nn的值很大,但gcd(i,n)\gcd(i,n)的取值并不多(nn的约数个数)。 当gcd(i,n)=1\gcd(i,n)=1时,可以想到这样的ii有ϕ(n)\phi(n)个。 当gcd(i,n)=x,x|n\gcd(i,n)=x,x|n时,其实可以发现,gcd(i/x,n/x)=1\gcd(i/x,n/x)=1,此时对答案的贡献为x∗ϕ(n/x)x*\phi原创 2017-10-08 18:07:59 · 232 阅读 · 0 评论 -
[BZOJ3531][SDOI2014]旅行(树剖+线段树)
先树剖一下,对每种宗教建一棵线段树。 当然,把所有的节点都建出来,在时空复杂度上都不允许。 所以考虑不建出所有的节点。主要想法是:一棵线段树里,只维护出部分叶子节点(信仰该宗教的城市)以及这些节点到线段树根的路径。可以知道,这样的建树复杂度为O(nlogn)O(n\log n)。 对于操作11,就在该城市的宗教对应的线段树里删掉这个叶子节点,并在cc教对应的线段树里添加这个叶子节点。 对于操原创 2017-10-08 17:59:57 · 295 阅读 · 0 评论 -
[BZOJ4821][SDOI2017]相关分析(线段树)
1、概述一道比BZOJ1858还要恶心的线段树…… 调了好几个小时……2、维护内容考虑拆开式子: ∑Ri=L(xi−x¯)(yi−y¯)∑Ri=L(xi−x¯)2=∑Ri=Lxiyi−(∑Ri=Lxi)∗(∑Ri=Lyi)R−L+1∑Ri=Lx2i−(∑Ri=Lxi)2R−L+1\frac{\sum_{i=L}^R(x_i-\bar x)(y_i-\bar y)}{\sum_{i=L}^R(x_原创 2017-10-06 12:13:11 · 517 阅读 · 0 评论 -
[BZOJ3930][CQOI2015]选数(数论+容斥)
首先,进行如下处理: 1、如果LL是KK的倍数,那么把LL变为LK\frac{L}{K},否则变为⌊LK⌋+1\lfloor\frac{L}{K}\rfloor+1。 2、把HH变成⌊HK⌋\lfloor\frac{H}{K}\rfloor。 这样子容易得出,现在要求的就是在[L,H][L,H]之间,选数NN次使选出的数最大公约数为11的方案数。 现在,用f[i]f[i]表示选出的数的最大公原创 2017-10-01 17:36:18 · 351 阅读 · 0 评论 -
[BZOJ4827][HNOI2017]礼物(FFT)
可以想到,先旋转到最优方案,再枚举亮度。 而关键在于怎样求旋转到的最优方案。 把差异值的式子展开得到: ∑ni=1(xi−yi)2=∑ni=1(x2i+y2i)−2∑ni=1xiyi\sum_{i=1}^n(x_i-y_i)^2=\sum_{i=1}^n(x_i^2+y_i^2)-2\sum_{i=1}^nx_iy_i。 所以目标就是让∑ni=1xiyi\sum_{i=1}^nx_iy_i最原创 2017-10-02 09:42:50 · 365 阅读 · 0 评论 -
[BZOJ2326][HNOI2011]数学作业(矩乘)
考虑求Concate(L...R)Concate(L...R)的值,其中[L,R][L,R]之间的数都是xx位数。 可以得到,Concate(L...i)Concate(L...i)可以用递推式表示。以下设Concate(L...i)Concate(L...i)为f[i]f[i]。 则有: f[L]=Lf[L]=L f[i]=f[i−1]∗10x+if[i]=f[i-1]*10^x+i 建原创 2017-10-02 14:36:25 · 237 阅读 · 0 评论 -
[BZOJ1927][SDOI2010]星际竞速(费用流)
回顾最小路径覆盖问题的解法: 先将nn个点拆点为ii和i′i'。然后由源点向所有的ii点连一条容量为11的边,再由所有的i′i'点向汇点连一条容量为11的边,对于每条边u−>vu->v,由uu向v′v'连一条容量为11的边,跑一遍最大流后,nn减去最大流就是最小路径覆盖。 为什么可以这样做呢?可以发现,上面其实是一个二分图,SS到TT的最大流实际上就是最大匹配数。如果这里把单个点也看成一条路径的原创 2017-08-26 22:51:10 · 279 阅读 · 0 评论 -
[BZOJ1076][SCOI2008]奖励关(状压DP)
很明显是一道状压。DPDP模型很容易想到,用f[i][S]f[i][S]表示到了第ii轮,宝物是否取过的状态为SS的最大期望得分。 但这个模型存在问题:可能在第ii轮无法到达状态SS。 所以,这里把定义换一下,f[i][S]f[i][S]表示在第11轮到第i−1i-1轮内宝物是否取过的状态为SS,第ii轮到第KK轮的最大期望得分,那么这样就可以通过逆推进行转移了。 转移方程为: 对于任意一个原创 2017-08-27 07:58:54 · 228 阅读 · 0 评论 -
[BZOJ2656][ZJOI2012]数列(递推+高精)
首先考虑一个问题,设u∗A(i)+v∗A(i+1)=x∗A(i/2)+y∗A(i/2+1)u*A(i)+v*A(i+1)=x*A(i/2)+y*A(i/2+1),i,u,vi,u,v为已知量,x,yx,y为未知量,求在ii分别为奇数和偶数时x,yx,y的一组正整数解。可以想到: ii为偶数时,i+1i+1为奇数。此时u∗A(i)+v∗A(i+1)=u∗A(i/2)+v∗(A(i/2)+A(i/2+原创 2017-08-27 08:07:36 · 432 阅读 · 0 评论 -
[BZOJ1898][ZJOI2005]沼泽鳄鱼(矩阵乘法)
先把无向边拆成两条有向边。 如果不考虑食人鱼,那么此题就是一个简单的矩乘问题。建立矩阵PP,如果存在边i−>ji->j则P[i][j]=1P[i][j]=1,否则P[i][j]=0P[i][j]=0。 最后PK[Start][End]P^K[Start][End]就是最终结果。 考虑食人鱼。注意到题目里食人鱼的运动周期长度只有22,33,44,可以得出,第tt个时间单位时是否可以在这个点上(没原创 2017-08-27 18:01:10 · 398 阅读 · 0 评论 -
[BZOJ2733][HNOI2012]永无乡(平衡树+启发式合并)
首先,构建出nn棵平衡树,每棵平衡树只有一个节点,第ii棵平衡树只包含第ii座岛的相关信息。然后使用并查集维护岛之间的连通关系,对于加边操作,如果并查集中点xx和yy不连通,那么就在并查集中连接点xx和yy,并把xx和yy所在的平衡树合并。否则不做任何操作。 而对于合并两棵平衡树,可以使用启发式合并,即把点数较少的平衡树中的点暴力合并到点数较多的平衡树上。实际上,这样操作,每个点被合并的次数不超过原创 2017-08-28 19:58:15 · 369 阅读 · 0 评论 -
[BZOJ2246][SDOI2011]迷宫探险(状压&概率DP)
1、DP模型用33进制数表示陷阱的状态,00表示无害,11表示有害,22表示未知。可建立DP模型: f[x][y][S][h]f[x][y][S][h]表示从(x,y)(x,y)开始,当前陷阱的状态为SS,血量为hh,活着走出迷宫的概率。使用记忆化搜索。2、边界&转移边界为: f[x][y][S][0]=0f[x][y][S][0]=0 当(x,y)(x,y)为终点时f[x][y][S][h]原创 2017-09-27 22:37:35 · 455 阅读 · 0 评论 -
[BZOJ3144][HNOI2013]切糕(最小割)
把切点看作割边。新建一个虚拟的层R+1R+1,建立源点S,TS,T。 先不考虑光滑限制。先由源点SS向第11层的每一个点连一条边,再由第R+1R+1层的每一个点向汇点TT连一条边,这些边是割不掉的,所以容量都为INFINF。 然后对于任何一个1≤i≤P,1≤j≤Q,1≤k≤R1\leq i\leq P,1\leq j\leq Q,1\leq k\leq R,由(i,j,k)(i,j,k)向(i,原创 2017-09-24 21:47:45 · 481 阅读 · 0 评论 -
[BZOJ1305][CQOI2009]跳舞(二分答案+最大流)
首先,把每个男生和女生都拆成两个点,建立超级源汇S,TS,T。 1、对于互相喜欢的一对男女生,由男生的第一个点向女生的第一个点连一条容量为11的边。 2、由所有男生的第一个点向第二个点连一条容量为kk的边。 3、由所有女生的第二个点向第一个点连一条容量为kk的边。 4、对于任意一对男女生,由男生的第二个点向女生的第二个点连一条容量为11的边。 然后二分最多舞曲数量midmid,在二分过程中原创 2017-09-24 21:23:10 · 231 阅读 · 0 评论 -
[BZOJ1223][HNOI2002]Kathy函数(数位DP/乱搞)
首先,在二进制意义下,f(n)f(n)为nn的各位数翻转,即f((a1a2...ax−1ax¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯)2)=(axax−1...a2a1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯)2f((\overline{a_1a_2...a_{x-1}a_x})_2)=(\overline{a_xa_{x-1}...a_2a_1})_2。 网上好多题解里都没有给出上面命题的具体证原创 2017-09-24 20:56:35 · 411 阅读 · 0 评论 -
[BZOJ1011][HNOI2008]遥远的行星(近似)
这道题我一直懵逼,后来看了题解中的一种玄学方法,看来我还是太弱。 这种玄学方法的要点就是利用“只要结果的相对误差不超过5%即可”这一条件。 首先,定义一个常数TT,在100100到300300之间。 对于第ii个行星,令x=⌊a∗i⌋x=\lfloor a*i\rfloor。可以看出,对第ii个行星有贡献的是[1,x][1,x]范围内的行星。 当x≤Tx≤T时,暴力统计。 当x>Tx>T时原创 2017-09-23 11:57:57 · 238 阅读 · 0 评论 -
[BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)
先考虑一个平面上的问题: 平面上有nn个点,消除一个x∗yx*y的矩形里的所有点需要用min(x,y)min(x,y)的代价,求消除所有点的最小代价。 在这里,我们可以发现,在这里用min(x,y)min(x,y)条竖线或横线就可以覆盖一个x∗yx*y的矩形。这样就变成了二分图最小点覆盖的裸题,套模板即可。回到问题。同样也可以将问题理解为以下模型: 空间内有nn个点,每一次操作可以消除一个面上原创 2017-09-19 22:10:28 · 631 阅读 · 0 评论 -
[BZOJ1195][HNOI2006]最短母串(状压DP)
首先,去除一些没有用的串。 也就是说,如果存在两个串sis_i和sjs_j使sjs_j是sis_i的子串,那么需要去除掉sjs_j(因为包含串sis_i就一定包含串sjs_j)。但是要注意考虑特殊情况:如果存在一个字符串集合SS,SS里的字符串全部相等,那么SS里的串在不作为其他串的子串的情况下必须保留一个。原创 2017-09-16 21:41:52 · 345 阅读 · 0 评论 -
[BZOJ1941][SDOI2010]Hide and Seek(线段树)
可以发现,对于任意两点ii和jj,如果xi≥xjx_i≥x_j且yi≥yjy_i≥y_j,则在计算ii和jj之间的曼哈顿距离时,可以去掉绝对值符号,移项后变为(xi+yi)−(xj+yj)(x_i+y_i)-(x_j+y_j)。可以发现如果离散化坐标之后点ii的坐标为(ui,vi)(u_i,v_i),则在点ii的左下角的所有点中,与ii的最小和最大距离就相当于求满足对于任何一个uk≤ui,vk≤vi原创 2017-09-16 21:21:38 · 354 阅读 · 0 评论 -
[BZOJ2028][SHOI2009]会场预约(Splay)
考虑以日期为关键字,把预约用Splay进行维护。 先考虑加入新的预约。设新的预约是从ll日到rr日。 很显然,一个从l0l_0日到r0r_0日的预约与这个新的预约不冲突的充分必要条件为:r0<lr_0<l或l0>rl_0>r。 首先找出满足r0<lr_0<l的情况下r0r_0最大的节点xx,以及满足l0>rl_0>r的情况下l0l_0最小的节点yy。这显然就是平衡树中求前驱后继的操作。 下面原创 2017-09-10 20:42:24 · 409 阅读 · 0 评论 -
[BZOJ2734][HNOI2012]集合选数(状压DP)
考虑构造出一个矩阵: 1248...361224...9183672...2754108216..................\begin{matrix}1 & 3 & 9 & 27 & ...\\2 & 6 & 18 & 54 & ...\\4 & 12 & 36 & 108 & ...\\8 & 24 & 72 & 216 & ...\\... & ... & ... & ..原创 2017-09-10 20:22:30 · 270 阅读 · 0 评论 -
[BZOJ2750][HAOI2012]Road(SPFA+拓扑排序)
首先介绍一个原则:i→ji→j的最短路径的任意一条子路径u→vu→v都是最短路径。 证明:假设存在一条子路径u→vu→v不是最短路径,那么一定能够找到一条更短的u→vu→v的路径使i→ji→j的路径更短。 根据这个原则,可以得出,在固定源点SS时,存在GG的一个子图G′G',使得G′G'的每一条边都在SS到其他至少一个点的最短路径上,且G′G'以外的边不在SS到任意一个点的最短路径上。这里把G′原创 2017-09-09 13:52:48 · 452 阅读 · 0 评论