[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(期望 DP + 矩阵乘法)

Address

洛谷P4007
UOJ#340
LOJ#2325

Solution

难道 m m m k k k 特别小,容易想到一个状态:
f [ i ] [ a ] [ b ] [ c ] f[i][a][b][c] f[i][a][b][c] 表示当前血量为 1 1 1 的随从有 a a a 个,血量为 2 2 2 的有 b b b 个,血量为 3 3 3 的有 c c c 个的情况下,发动 i i i 次攻击对 boss 造成的期望伤害。
边界:
f [ 0 ] [ a ] [ b ] [ c ] = 0 f[0][a][b][c]=0 f[0][a][b][c]=0
转移 1 :攻击 boss 。
f [ i ] [ a ] [ b ] [ c ] + = ( 1 + f [ i − 1 ] [ a ] [ b ] [ c ] ) 1 + a + b + c f[i][a][b][c]+=\frac{(1+f[i-1][a][b][c])}{1+a+b+c} f[i][a][b][c]+=1+a+b+c(1+f[i1][a][b][c])
转移 2 :击杀一个血量为 1 1 1 的随从。
f [ i ] [ a ] [ b ] [ c ] + = f [ i − 1 ] [ a − 1 ] [ b ] [ c ] × a 1 + a + b + c f[i][a][b][c]+=f[i-1][a-1][b][c]\times\frac a{1+a+b+c} f[i][a][b][c]+=f[i1][a1][b][c]×1+a+b+ca
转移 3 :随从数量达到上限时,攻击一个血量为 2 2 2 的随从。
f [ i ] [ a ] [ b ] [ c ] + = f [ i − 1 ] [ a + 1 ] [ b − 1 ] [ c ] × b 1 + a + b + c , a + b + c = k f[i][a][b][c]+=f[i-1][a+1][b-1][c]\times\frac b{1+a+b+c},a+b+c=k f[i][a][b][c]+=f[i1][a+1][b1][c]×1+a+b+cb,a+b+c=k
转移 4 :随从数量达到上限时,攻击一个血量为 3 3 3 的随从。
f [ i ] [ a ] [ b ] [ c ] + = f [ i − 1 ] [ a ] [ b + 1 ] [ c − 1 ] × c 1 + a + b + c , a + b + c = k f[i][a][b][c]+=f[i-1][a][b+1][c-1]\times\frac c{1+a+b+c},a+b+c=k f[i][a][b][c]+=f[i1][a][b+1][c1]×1+a+b+cc,a+b+c=k
转移 5 :随从数量未达到上限时,攻击一个血量为 2 2 2 的随从,召唤一个血量为 m m m 的随从。
(1) m = 2 m=2 m=2
f [ i ] [ a ] [ b ] [ c ] + = f [ i − 1 ] [ a + 1 ] [ b ] [ c ] × b 1 + a + b + c f[i][a][b][c]+=f[i-1][a+1][b][c]\times\frac b{1+a+b+c} f[i][a][b][c]+=f[i1][a+1][b][c]×1+a+b+cb
(2) m = 3 m=3 m=3
f [ i ] [ a ] [ b ] [ c ] + = f [ i − 1 ] [ a + 1 ] [ b − 1 ] [ c + 1 ] × b 1 + a + b + c f[i][a][b][c]+=f[i-1][a+1][b-1][c+1]\times\frac b{1+a+b+c} f[i][a][b][c]+=f[i1][a+1][b1][c+1]×1+a+b+cb
转移 6 :随从数量未达到上限时,攻击一个血量为 3 3 3 的随从,召唤一个血量为 m m m 的随从。
(1) m=3 :
f [ i ] [ a ] [ b ] [ c ] + = f [ i − 1 ] [ a ] [ b + 1 ] [ c ] × c 1 + a + b + c f[i][a][b][c]+=f[i-1][a][b+1][c]\times\frac c{1+a+b+c} f[i][a][b][c]+=f[i1][a][b+1][c]×1+a+b+cc
转移 5 和转移 6 的条件为 a + b + c &lt; k a+b+c&lt;k a+b+c<k
注意到 n n n 非常大,递推式是线性的,多次转移时系数不变,可以使用矩阵乘法优化 DP 。
注意到满足 a + b + c ≤ k a+b+c\le k a+b+ck 的有序三元组 ( a , b , c ) (a,b,c) (a,b,c) 最多有 ( k + 3 3 ) \binom{k+3}3 (3k+3) 个,
k = 8 k=8 k=8 时为 165 165 165
可以矩乘。
最后一个小问题就是多组数据。
我们知道,矩阵快速幂优化 DP 的本质是倍增。
所以预处理出转移矩阵的 2 0 2^0 20 2 1 2^1 21 2 2 2^2 22 , … 次幂。
然后每次询问就相当与一个初始向量乘上不超过 O ( log ⁡ n ) O(\log n) O(logn) 个转移矩阵。
复杂度 O ( ( k + 3 3 ) 3 log ⁡ n + T ( k + 3 3 ) 2 log ⁡ n ) O(\binom{k+3}3^3\log n+T\binom{k+3}3^2\log n) O((3k+3)3logn+T(3k+3)2logn)
一个卡常的技巧是取一个 2 × 1 0 18 2\times10^{18} 2×1018 左右的, 998244353 998244353 998244353 的倍数 R R R ,矩阵乘法时用 long long 加起来,当超过 R R R 时减去 R R R ,加完之后再取模。

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)

inline int read()
{
	int res = 0; bool bo = 0; char c;
	while (((c = getchar()) < '0' || c > '9') && c != '-');
	if (c == '-') bo = 1; else res = c - 48;
	while ((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c - 48);
	return bo ? ~res + 1 : res;
}

typedef long long ll;

const int N = 170, M = 74, P = 10, ZZQ = 998244353;

int T, m, K, st[P][P][P], nn, inv[P];
ll n;

struct matr
{
	int n, m, a[N][N];
	
	matr() {}
	matr(int _n, int _m) : n(_n), m(_m)
	{
		memset(a, 0, sizeof(a));
	}
	
	friend inline matr operator * (const matr &a, const matr &b)
	{
		int i, j, k;
		matr res = matr(a.n, b.m);
		For (i, 1, res.n) For (j, 1, res.m)
		{
			ll sum = 0;
			For (k, 1, a.m)
			{
				sum += 1ll * a.a[i][k] * b.a[k][j];
				if (sum >= 2096313141300000000ll)
					sum -= 2096313141300000000ll;
			}
			res.a[i][j] = sum % ZZQ;
		}
		return res;
	}
} pw[M], St, Ans;

int main()
{
	int i, j, k;
	T = read(); m = read(); K = read();
	inv[1] = 1;
	For (i, 2, K + 1) inv[i] = 1ll * (ZZQ - ZZQ / i) * inv[ZZQ % i] % ZZQ;
	For (i, 0, K) For (j, 0, K) For (k, 0, K)
		if (i + j + k <= K) st[i][j][k] = ++nn;
	pw[0] = matr(nn + 1, nn + 1);
	St = matr(nn + 1, 1);
	St.a[nn + 1][1] = 1;
	For (i, 0, K) For (j, 0, K) For (k, 0, K)
	{
		if (i + j + k > K) continue;
		int x = st[i][j][k], tmp = inv[i + j + k + 1];
		if (i) pw[0].a[x][st[i - 1][j][k]] = 1ll * i * tmp % ZZQ;
		if (j)
		{
			if (i + j + k == K)
				pw[0].a[x][st[i + 1][j - 1][k]] = 1ll * j * tmp % ZZQ;
			else if (m == 1)
				pw[0].a[x][st[i + 2][j - 1][k]] = 1ll * j * tmp % ZZQ;
			else if (m == 2)
				pw[0].a[x][st[i + 1][j][k]] = 1ll * j * tmp % ZZQ;
			else pw[0].a[x][st[i + 1][j - 1][k + 1]] = 1ll * j * tmp % ZZQ;
		}
		if (k)
		{
			if (i + j + k == K)
				pw[0].a[x][st[i][j + 1][k - 1]] = 1ll * k * tmp % ZZQ;
			else if (m == 1)
				pw[0].a[x][st[i + 1][j + 1][k - 1]] = 1ll * k * tmp % ZZQ;
			else if (m == 2)
				pw[0].a[x][st[i][j + 2][k - 1]] = 1ll * k * tmp % ZZQ;
			else pw[0].a[x][st[i][j + 1][k]] = 1ll * k * tmp % ZZQ;
		}
		pw[0].a[x][x] = pw[0].a[x][nn + 1] = tmp;
	}
	pw[0].a[nn + 1][nn + 1] = 1;
	For (i, 1, 59) pw[i] = pw[i - 1] * pw[i - 1];
	while (T--)
	{
		scanf("%lld", &n);
		Ans = St;
		For (i, 0, 59)
			if ((n >> i) & 1) Ans = pw[i] * Ans;
		if (m == 1) printf("%d\n", Ans.a[st[1][0][0]][1]);
		else if (m == 2) printf("%d\n", Ans.a[st[0][1][0]][1]);
		else printf("%d\n", Ans.a[st[0][0][1]][1]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值