obeject detection
文章平均质量分 57
xz1308579340
这个作者很懒,什么都没留下…
展开
-
人脸检测-RetinaFace
《RetinaFace: Single-stage Dense Face Localisation in the Wild》论文地址:https://arxiv.org/pdf/1905.00641.pdfInsight Face在2019年提出的最新人脸检测模型,原模型使用了deformable convolution和dense regression loss, 在 WiderFace 数据集上达到SOTA。1、摘要虽然在未受控制的人脸检测方面取得了巨大进步,但野外准确有效的面部定位仍然是一个开原创 2021-03-02 17:10:23 · 302 阅读 · 0 评论 -
RetinaNet
object detection的算法主要可以分为三大类:two-stage detectorone-stage detector基于焦点该论文最大的贡献在于提出了Focal Loss用于解决类别不均衡问题,从而创造了RetinaNet(One Stage目标检测算法)这个精度超越经典Two Stage的Faster-RCNN的目标检测网络。基于深度学习的目标检测算法有两类经典的结构:Two Stage 和 One Stage。**Two Stage:**例如Faster-RCNN算法。第一级专原创 2021-03-02 15:53:26 · 304 阅读 · 0 评论 -
一文搞懂MAP值
一文搞懂map值翻译:https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173目标检测中的mAP(平均精度)英文全称:mean Average PrecisionAP(平均精度)是衡量目标检测算法好坏的常用指标,在Faster R-CNN,SSD等算法中作为评估...原创 2019-07-24 17:15:05 · 9246 阅读 · 1 评论