人脸识别
xz1308579340
这个作者很懒,什么都没留下…
展开
-
A-Softmax(SphereFace)
论文:SphereFace:https://arxiv.org/abs/1704.08063 SphereFace在MegaFace数据集上识别率在2017年排名第一,用的A-Softmax Loss有着清晰的几何定义,能在比较小的数据集上达到不错的效果。 首先,需要先科普一下在训练和测试人脸识别分类器的时候经常被提到的Open-set 和Close-set。Figure 1是一个直观的展示。 close-set,就是所有的测试集都在训练集中出现过。所以预测结果是图片的ID,如果想要测试两张图片是否是同一个转载 2020-07-26 22:48:27 · 896 阅读 · 0 评论 -
人脸识别中的全脸/半脸/中脸
人脸识别中的一个常用概念是全脸/中脸/半脸 下面讲一下区别 目前DeepFaceLab拥有三种不同类型的脸部模式,H64和H128是半脸(half face)模型,DF LIAEF128 Quick96是全脸(full face)模型,SAE SAEHD拥有半脸 (half face) 和中脸 (medium face) 和全脸(full face)三种模式,本篇文章就说一说这些“脸”的区别。 半脸模型: 缺点:面积较小,没有额头脸颊和下巴难于正确遮盖,若两人差别太大就难有好的效果。比如src有络腮胡,但原创 2020-07-20 14:21:40 · 3459 阅读 · 0 评论 -
PFLD: A Practical Facial Landmark Detector
转载: https://www.jiqizhixin.com/articles/2019-04-17-20 PFLD算法,目前主流数据集上达到最高精度、ARM安卓机140fps,模型大小仅2.1M! 研究背景 人脸关键点检测,在很多人脸相关的任务中,属于基础模块,很关键。比如人脸识别、人脸验证、人脸编辑等等。想做人脸相关的更深层次的应用,人脸关键点是绕不过去的点。正是因为它是一个基础模块,所以对速度很敏感,不能太耗时,否则影响了系统整体的效率。所以对人脸关键点检测的要求是,又准又快。 研究问题 人脸关键点转载 2020-07-19 22:24:49 · 318 阅读 · 0 评论 -
RetinaFace: Single-stage Dense Face Localisation in the Wild
作者: 帝国理工,伦敦米德尔塞克斯大学,InsightFace paper: https://arxiv.org/pdf/1905.00641.pdf github: https://github.com/deepinsight/insightface/tree/master/RetinaFace 1.摘要 摘要: 虽然在未受控制的人脸检测方面取得了巨大进步,但野外准确有效的面部定位仍然是一个开放的挑战。这篇文章提出了一个强大的单阶段人脸检测器,名为RetinaFace,它利用联合监督和自我监督的多任务学习原创 2020-07-10 21:15:05 · 291 阅读 · 0 评论 -
损失函数改进之Center Loss
最近几年网络效果的提升除了改变网络结构外,还有一群人在研究损失层的改进,这篇博文要介绍的就是较为新颖的center loss。center loss来自ECCV2016的一篇论文:A Discriminative Feature Learning Approach for Deep Face Recognition。 论文链接:http://ydwen.github.io/papers/WenEC...转载 2020-04-03 21:48:04 · 1671 阅读 · 0 评论