题目描述
2.3.2 Cow Pedigrees 奶牛家谱
(nocows.pas/c/cpp)
农民约翰准备购买一群新奶牛。 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛。这些奶牛间的关系可以用二叉树来表示。这些二叉树总共有N个节点(3 <= N < 200)。这些二叉树有如下性质:
每一个节点的度是0或2。度是这个节点的孩子的数目。
树的高度等于K(1 < K < 100)。高度是从根到最远的那个叶子所需要经过的结点数; 叶子是指没有孩子的节点。
有多少不同的家谱结构? 如果一个家谱的树结构不同于另一个的, 那么这两个家谱就是不同的。输出可能的家谱树的个数除以9901的余数。
格式
PROGRAM NAME: nocows
INPUT FORMAT (file nocows.in)
第1行: 两个空格分开的整数, N和K。
OUTPUT FORMAT (file nocows.out)
第 1 行: 一个整数,表示可能的家谱树的个数除以9901的余数。
SAMPLE INPUT
5 3
SAMPLE OUTPUT
2
OUTPUT DETAILS
有5个节点,高为3的两个不同的家谱:
           @                                @
          / \                              / \
         @   @        和                  @   @
        / \                                  / \
       @   @                                @   @
解题思路:
区间DP
设dp[i][j]表示j个点组成深度最多为i的二叉树的方法数,则动态规划公式为:
dp[i][j]=∑(dp[i-1][l]*dp[i-1][j-1-l])(1<=l<=j-2)
dp[i][1]=1
代码:
#include<bits/stdc++.h>
using namespace std;
const int Mod = 9901;
const int N = 205;
int dp[N][N],n,k;
int main()
{
    scanf("%d%d",&n,&k);
    for(int i = 1;i < 205;i++) dp[1][i] = 1;
    for(int i = 1;i <= k;i++)
        for(int j = 3;j <= n;j += 2)
            for(int t = 1;t < j;t += 2)
                dp[j][i] = (dp[j][i] + dp[t][i - 1] * dp[j - t - 1][i - 1]) % Mod;
    printf("%d\n",(dp[n][k] - dp[n][k - 1] + Mod) % Mod);
    return 0;
}
 
                   
                   
                   
                   
                            
 
                             本文探讨了CowPedigrees奶牛家谱问题,通过区间DP算法解决给定N个节点和高度K的情况下,不同家谱结构的数量。文章提供了详细的解题思路和代码实现,展示了如何计算可能的家谱树个数并返回其除以9901的余数。
本文探讨了CowPedigrees奶牛家谱问题,通过区间DP算法解决给定N个节点和高度K的情况下,不同家谱结构的数量。文章提供了详细的解题思路和代码实现,展示了如何计算可能的家谱树个数并返回其除以9901的余数。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   236
					236
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            