石子游戏大合集[博弈论]

这篇博客探讨了不同类型的取石子游戏,包括单一堆和多堆的情况。通过对游戏规则的分析,提供了判断游戏胜负的策略,涉及到 SG 函数和石子数量的特殊关系。对于每个游戏,都给出了样例输入和输出,以及详细的题解和代码实现。
摘要由CSDN通过智能技术生成

题目描述(取石子游戏1)

有一种有趣的游戏,玩法如下:
玩家:2人;
道具:N颗石子;
规则:
游戏双方轮流取石子;
每人每次取走若干颗石子(最少取 1颗,最多取 K 颗);
石子取光,则游戏结束;
最后取石子的一方为胜。
假如参与游戏的玩家都非常聪明,问最后谁会获胜?

输入

输入仅一行,两个整数 N 和 K。

输出

输出仅一行,一个整数,若先手获胜输出 1,后手获胜输出 2。
样例输入
23 3

样例输出

1

题解:

判断一下石子数是不是最大可取石子数加1的倍数就行了。因为只要是倍数关系,只要后手使石子数一直保持这个倍数关系就必胜。意思就是说先手取1个,后手取k-1个

C o d e : Code: Code:

#include<bits/stdc++.h>
using namespace std;
int n,k;
int main()
{
   
    cin>>n>>k;
    if(n%(k+1)==0)cout<<2<<endl;
    else cout<<1<<endl;
}

题目描述(取石子游戏2)

有一种有趣的游戏,玩法如下:
玩家:2人;
道具:N 堆石子,每堆石子的数量分别为 X1, X2,…,Xn
规则:
游戏双方轮流取石子;
每人每次选一堆石子,并从中取走若干颗石子(至少取 1颗);
所有石子被取完,则游戏结束;
如果轮到某人取时已没有石子可取,那此人算负。
假如两个游戏玩家都非常聪明,问谁胜谁负?

输入

第一行,一个整数 N;
第二行,N个空格间隔的整数 Xi
,表示每一堆石子的颗数。

输出

输出仅一行,一个整数,若先手获胜输出 win,后手获胜输出 lose。

样例输入

4
7 12 9 15

样例输出

win

题解:

此题涉及SG函数,取SG[x]=x,全部异或起来,不为0即先手赢,为0则后手赢。

C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值