密码【扩展欧几里得】

题目描述

有一个密码箱, 0 0 0 n − 1 n-1 n1中的某些整数是它的密码。且满足:如果a和b都是它的密码,那么 ( a + b ) (a+b)%n (a+b)也是它的密码(a,b可以相等,%表示整除取余数),某人试了 k k k次密码,前 k − 1 k-1 k1次都失败了,最后一次成功了。
问:该密码箱最多有多少不同的密码。

输入

第一行两个整数分别表示n,k( 1 ≤ k ≤ 250000 , k ≤ n ≤ 1 0 14 1≤k≤250000,k≤n≤10^{14} 1k250000kn1014)。第二行为k个用空格隔开的非负整数,表示每次试的密码。数据保证存在合法解。

输出

输出一行一个数,表示结果。

题解:

解决这个问题之前,我们首先来学习扩展欧几里得算法。大佬自动忽略
结论:若 a ∗ x + b ∗ y = c a*x+b*y=c ax+by=c有解,设 t = g c d ( a , b ) , 则 c 除 以 t 取 余 = 0 t=gcd(a,b),则c除以t取余=0 t=gcd(a,b),ct=0。注意,这里的x和y不一定是正整数,也有可能是0或者负数。
边界情况:当 b = 0 b=0 b=0时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值