教主的花园 动态规划

教主的花园(garden.pas/c/cpp)

教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值。
教主最喜欢3种树,这3种树的高度分别为10,20,30。教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高。

输入格式

输入的第1行为一个正整数n,表示需要种的树的棵树。
接下来n行,每行3个不超过10000的正整数ai,bi,ci,按顺时针顺序表示了第i个位置种高度为10,20,30的树能获得的观赏价值。
第i个位置的树与第i+1个位置的树相邻,特别地,第1个位置的树与第n个位置的树相邻。

输出格式

输出仅包括一个正整数,为最大的观赏价值和。

样例输入

4
1 3 2
3 1 2
3 1 2
3 1 2

样例输出

11

样例说明

第1~n个位置分别种上高度为20,10,30,10的树,价值最高。

数据规模

对于20%的数据,有n≤10;
对于40%的数据,有n≤100;
对于60%的数据,有n≤1000;
对于100%的数据,有4≤n≤100000,并保证n一定为偶数。

思路:

两种做法:二维或三维的动态规划
三维 d p dp dp会更好想一些:定义三元组 ( i , j , k ) (i,j,k) (i,j,k),为第 i i i棵树,种类是 j j j(高度10用1表示,高度20用2表示,高度30用3表示),和前面一棵树的关系是k(1是上升,0是下降)。
状态定义完毕,接下来就是处理环的问题了。
在这道题中,我们可以对第2~n棵树进行 d p dp dp,最后特判一下第n棵树和第1棵树的关系与价值,取优值即可。

C o d e : Code: Code:

#include<bits/stdc++.h>
using namespace std;
const int N=100005;
int f[N][5][2],h[N][5];//放全局变量
int n,ans=0;
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d%d%d",&h[i][1],&h[i][2],&h[i][3]);
    for(int i=2;i<=n;i++)
    {
        f[i][1][1]=max(f[i-1][2][0],f[i-1][3][0])+h[i][1];;//种10m的树与之前下降的20m树或者30m树哪个价值更优
        f[i][2][1]=f[i-1][3][0]+h[i][2];//种20米的树和前面30m的树是下降状态
        f[i][2][0]=f[i-1][1][1]+h[i][2];//种20米的树和前面10m的树是上升状态
        f[i][3][0]=max(f[i-1][2][1],f[i-1][1][1])+h[i][3];//种30m的树与之前上升的10m树或者20m树哪个价值更优
    }
    ans=max(ans,f[n][1][1]+h[1][2]);//1和n的特判
    ans=max(ans,f[n][1][1]+h[1][3]);
    ans=max(ans,f[n][2][0]+h[1][1]);
    ans=max(ans,f[n][2][1]+h[1][3]);
    ans=max(ans,f[n][3][0]+h[1][1]);
    ans=max(ans,f[n][3][0]+h[1][2]);
    printf("%d\n",ans);
    return 0;
}

二维dp做法:
f [ i ] [ 1 − 4 ] f[i][1-4] f[i][14]表示分别前i棵树,第i棵树的高度为10(下棵树肯定要比它高),20(下棵树比它高),20(下棵树比它矮),30(下棵树肯定要比它矮)的最大价值。

C o d e : Code: Code:

#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define INF 0x3f3f3f3f
int h[N][3];
int f[N][4];
void mem()
{
    f[1][0]=f[1][1]=f[1][2]=f[1][3]=-INF;
}
int n,ans;
void dp()
{
    for(int i=2;i<=n;i++)
    {
        f[i][0]=max(f[i-1][2],f[i-1][3])+h[i][0];
        f[i][1]=f[i-1][3]+h[i][1];
        f[i][2]=f[i-1][0]+h[i][1];
        f[i][3]=max(f[i-1][1],f[i-1][0])+h[i][2];
    }
}
void work()
{
    mem();f[1][0]=h[1][0];dp();ans=max(ans,max(f[n][2],f[n][3]));
    mem();f[1][1]=h[1][1];dp();ans=max(ans,f[n][3]);
    mem();f[1][2]=h[1][1];dp();ans=max(ans,f[n][0]);
    mem();f[1][3]=h[1][2];dp();ans=max(ans,max(f[n][0],f[n][1]));
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d%d%d",&h[i][0],&h[i][1],&h[i][2]);
    work();
    printf("%d\n",ans);
}
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:上身试试 返回首页