感悟1--20180927

20180927–skyfans语录

1.请注意,世间没有那么多人关注你,你不关注,没人去关注,别总自己吓唬自己!

2.世间本没有真事,说的多了,假的也变成了真的!

3.你可能什么都不会,也可能什么都不知道,不过你能详细的把别人的东西说成是你的东西,那么恭喜你,你已经知道了并且会了!

4.不要认为其他人比你优秀多少,多的只是你在问为什么的时候,他却在百度,而后总结成为他自己的!

5.争着当干部对你没坏处,多干活也累不死,想想你的村里干部都是怎么争取选举上的,哪怕是变卖家产!

6.先给自己定一个小目标,管他能否实现了呢,至少先有了,万一哪天实现了呢,那就看你怎么努力了。所谓不怕比你差的人和你一样,就怕比你优秀的人比你还努力!

7.练练练 练练练 练练练练练 练练练练练练练 练练练练练。多练累不死,如果你不知道前面话的怎么读,请用灵儿响叮当的曲调唱出来!换个思路,你会发现问题很简单!

8.当你在悠悠的怀念你曾经的同学的时候,那么恭喜你,你已经成为了领导了,因为你想到了你们曾经是一个团体。以后,没有什么可言,请珍惜你现在的学生时光!
在这里插入图片描述

K-means算法是一种经典的聚类算法,它通过将数据集划分成K个簇,使得每个簇内的数据点之间的距离最小,而簇与簇之间的距离最大。在学习和实践K-means算法的过程中,我有以下几点感悟: 首先,K-means算法是一种简单易用的算法,适用于大规模数据处理。算法的核心思想是通过不断迭代,将数据集划分成K个簇。在每一次迭代中,K-means算法会计算每个数据点与每个簇中心的距离,并将数据点归属到距离最近的簇中心。通过多次迭代,可以得到最终的簇划分结果。 其次,K-means算法的效率和精度受到初始簇中心的影响。由于K-means算法的迭代是基于初始簇中心进行的,因此初始簇中心的选择会影响算法的效率和精度。在实践中,我们可以通过多次随机选择初始簇中心,并计算每次迭代的效果,以选择最优的初始簇中心。 最后,K-means算法的应用场景非常广泛。例如,它可以应用在图像分割、文本聚类、生物信息学等方面。通过对数据进行聚类分析,可以帮助我们更好地理解数据的内在规律和特征,从而作出更加准确的决策。 总之,K-means算法是一种非常有意义的聚类算法,它可以帮助我们更好地理解数据,从而作出更加准确的决策。在学习和实践K-means算法的过程中,我们需要注重算法的理论和实践结合,以便更好地理解算法的核心思想和应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值