用 Python 从零开始创建神经网络(十三):训练数据集(Training Dataset)

训练数据集(Training Dataset)

引言

既然我们在讨论数据集和测试,就值得提到关于训练数据集的一些操作,这些操作称为预处理。然而,重要的是要记住,无论我们对训练数据进行什么预处理,这些处理也需要应用到验证数据、测试数据以及后续的预测数据上。

神经网络通常在值范围为 0 0 0 1 1 1 − 1 -1 1 1 1 1的数据上表现最佳,其中 − 1 -1 1 1 1 1范围更为优选。将数据中心化到 0 0 0可以帮助模型训练,因为这可以减弱权重在某个方向上的偏置。尽管在大多数情况下,模型在 0 0 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值