引言
在当今数字化的时代,数据就像一座宝藏,而网页爬虫就是我们从海量数据中发掘宝藏的工具之一。而结合人工智能生成技术(AIGC)和Python语言,可以更快速地实现网页爬虫,让我们一起来探索这个神奇的组合吧!
流程
1. 安装引入相关库
首先,我们需要安装Python中用于网页爬虫的相关库,比如requests、BeautifulSoup等。这些库可以帮助我们发送HTTP请求,并解析HTML结构。
# python http请求库
!pip install requests
# python dom 查找
# 不用写正则表达式
!pip install beautifulsoup4
# 通义千问大模型
!pip install dashscope
import requests # node require
from bs4 import BeautifulSoup
import dashscope
2. 发送HTTP请求,得到HTML结构
接下来,我们可以通过发送HTTP请求来获取网页的HTML内容。
def fetch_movie_list(url):
# 设置HTTP 请求头
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Edg/124.0.0.0'
}
response = requests.get(url, headers=headers)
# HTTP状态码 成功
if response.status_code == 200:
# 解析器 对html继续解析
soup = BeautifulSoup(response.text, 'html.parser') # 内存中的dom对象
movie_list = []
movies = soup.select('#wrapper #content .article .item')
# python 不是完全面向对象的,而更年轻的js 是完全面向对象
# print(len(movies))
# 确保一定是 字符串
all_movies_text = ''.join([movie.prettify() for movie in movies[:2]])
# print(all_movies_text)
return all_movies_text
else:
print('Failed to retrieve content')
url = 'http://movie.douban.com/chart'
# 函数调用
movies = fetch_movie_list(url)
print(movies)
HTTP 请求头中的User-Agent可以通过在浏览器中打印navigator.userAgent得到
3. 设置Prompt(预设提示)
在使用AIGC之前,我们需要设置Prompt,以便AIGC可以生成我们需要的内容。
# AIGC LLM + Prompt(指令)
prompt = f"""
{movies}
这是一段电影列表html,请获取电影名(name),封面链接(picture),简介(info),评分(score),评论人数(conmmentsNumber)
,请使用括号里的单词作为属性名,并以JSON数组的格式返回
"""
print(prompt)
4. 调用通义千问API
现在,我们可以调用AIGC的API,并传入HTML内容和设置好的Prompt,让AIGC帮助我们生成网页爬虫所需的代码。
API_KEY可以在模型服务灵积 DashScope - 阿里云 (aliyun.com)中点击立即开通后点击控制台的API_KEY管理获得
# 更改为自己的API_KEY
dashscope.api_key = API_KEY
def call_qwen_with_prompt():
message = [
{
'role':'user',
'content':prompt
}
]
response = dashscope.Generation.call(
dashscope.Generation.Models.qwen_turbo,
messages = message,
result_messages = 'messages'
)
print(response)
call_qwen_with_prompt()
结语
最终,通过以上步骤,我们可以快速实现一个网页爬虫,从网页中提取我们需要的信息。让编程变得更简单,让AIGC和Python助力你的工作吧!如果你觉得这篇文章有帮助或有所启发,别忘了给我一个鼓励的赞!