POJ-1163-The Triangle

题目:

7
3   8
8   1   0
2   7   4   4
4   5   2   6   5

(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output
Your program is to write to standard output. The highest sum is written as an integer.
Sample Input
5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5
Sample Output
30

大概意思是:从数字三角形的顶端开始,寻找一条路径,使这条路径上每个结点数值之和最大,规定在每个节点处只能向左下或右下行进。


解析:这道题当然是用动态规划来做啦!建立一个数组dp[][]用来存储从每个结点开始的最大值路径,然后运用状态转移方程:dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])就可以啦!题目和代码都比较简单。


下面是AC过得代码:

#include <iostream>
#include <cmath>
#include <cstring>

using namespace std;

int main()
{
	int n;//表示三角形有n层
	cin>>n;
	int tri[n+1][n+1];
	int dp[n+2][n+2];
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
		cin>>tri[i][j];
	memset(dp,0,sizeof(dp));
	for(int i=n;i>=1;i--)
	{
		for(int j=1;j<=i;j++)
			dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+tri[i][j];
	}
	cout<<dp[1][1]<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值