HDU-1176-免费馅饼

题目:

免费馅饼      HDU - 1176

都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)

Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4

解析:这道题和POJ-1136一样,都是很基础的动态规划问题。大家可以参考之前的解析:点击打开POJ-1136的解析

       首先建立一个数组:dp[100005][15]用来存储在t时(及t之后)每个位置可以接到的饼的最大值。因为在dp[t][i]的值一定包含了在t时i处落下饼的个数,因此在输入时直接将数值存储在dp数组中就可以了。然后最重要的就是状态压缩方程:dp[i][t]+=max(max(dp[i+1][t-1],dp[i+1][t]),dp[i+1][t+1])

                      有更好的算法的话请指教。



下面是AC了的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int dp[100005][15];
int main()
{
	for(;;)
	{
		int n;
		scanf("%d",&n);
		if(n==0) break;
		int hi=0;//三角形深度

		memset(dp,0,sizeof(dp));

		while(n--)
		{
			int T,x;
			scanf("%d%d",&x,&T);
			 dp[T][x+1]++;
			 hi=max(hi,T);
		}
		for(int i=hi;i>=0;i--)//从第hi层开始
		{
			for(int t=1;t<=11;t++)
				dp[i][t]+=max(max(dp[i+1][t-1],dp[i+1][t]),dp[i+1][t+1]);
		}
		printf("%d\n",dp[0][6]);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值