题目:
免费馅饼 HDU - 1176
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
6 5 1 4 1 6 1 7 2 7 2 8 3 0
4
解析:这道题和POJ-1136一样,都是很基础的动态规划问题。大家可以参考之前的解析:点击打开POJ-1136的解析
首先建立一个数组:dp[100005][15]用来存储在t时(及t之后)每个位置可以接到的饼的最大值。因为在dp[t][i]的值一定包含了在t时i处落下饼的个数,因此在输入时直接将数值存储在dp数组中就可以了。然后最重要的就是状态压缩方程:dp[i][t]+=max(max(dp[i+1][t-1],dp[i+1][t]),dp[i+1][t+1])。
有更好的算法的话请指教。
下面是AC了的代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int dp[100005][15];
int main()
{
for(;;)
{
int n;
scanf("%d",&n);
if(n==0) break;
int hi=0;//三角形深度
memset(dp,0,sizeof(dp));
while(n--)
{
int T,x;
scanf("%d%d",&x,&T);
dp[T][x+1]++;
hi=max(hi,T);
}
for(int i=hi;i>=0;i--)//从第hi层开始
{
for(int t=1;t<=11;t++)
dp[i][t]+=max(max(dp[i+1][t-1],dp[i+1][t]),dp[i+1][t+1]);
}
printf("%d\n",dp[0][6]);
}
return 0;
}