临床模型预测
文章平均质量分 69
xzxg001
这个作者很懒,什么都没留下…
展开
-
临床预测模型:校准曲线
区分能力反映了模型区别不同结果能力的效果,其核心评价指标包括ROC曲线下面积(AUC)和C指数,校准性则指模型预测的准确度,它通过比较预测结果和实际发生情况之间的吻合程度来衡量。校准曲线是将Hosmer-Lemeshow测试结果可视化的方法,通过对比不同分位数上的预测概率与观察概率,来作为评估预测概率准确性的图形工具,实际上展现的是预测概率与发生概率的对比散点图。S:z和S:p是Spiegelhalter Z-test的Z值和P值,要求P>0.05,说明无差异,说明拟合的线与标准参考线吻合度高。原创 2024-04-09 23:55:21 · 1766 阅读 · 1 评论 -
临床预测模型:DCA曲线(决策曲线分析)
在DCA图中,通常会包括几条参考线作为比较的基准,最常见的有:“不采取任何行动”(Treat None)的净收益线:假设没有患者被治疗,此时的净收益是零。模型的净收益曲线如果在较宽的阈值概率范围内保持较高的净收益,且变化平稳,可能表明该模型具有较好的泛化能力和一致的性能。4)曲线的交叉点:如果两个模型的决策曲线在某些阈值概率下交叉,这表明不同模型可能在不同的阈值概率范围内各有优势。1)查找净收益最高的曲线:在特定的阈值概率下,净收益最高的模型曲线表示该模型在该阈值下为临床决策提供了最大的益处。原创 2024-04-10 00:11:13 · 11810 阅读 · 1 评论 -
临床模型预测:临床影响曲线(CIC)
例如,如果某种新的诊断测试对于检测一种罕见疾病具有较高的敏感性,但同时也有较高的假阳性率,那么在应用这种测试时,虽然可以较少地错过真正的病例,但也可能导致大量健康人被错误地诊断为疾病患者。以上图为例,在x轴上风险阈值为0.2的地方,用我们构建的临床预测模型预测的发生风险的人数大约在600人,而实际发生风险的人数大概在370人。在x轴上风险阈值为0.6的地方,用我们构建的临床预测模型预测的发生风险的人数大约在380人,而实际发生风险的人数大概在300人,优于0.2阈值。的发生结局事件的人数,原创 2024-04-10 00:21:59 · 2495 阅读 · 0 评论 -
临床预测模型:KM曲线
这表示在该时间点还未发生事件(如死亡或失访)的受试者数量。3)绘制曲线:以时间为横轴,生存率为纵轴绘制曲线。每当发生事件时,曲线向下跳跃,大小与该时间点发生事件的比例成正比。:KM方法不需要对数据的生存时间分布做出任何假设,使其适用于各种类型的生存时间数据。Kaplan-Meier曲线(KM曲线)是生存分析中常用的一种工具,用于估计在。是一种统计方法,用于预测事件(如死亡、疾病复发等)的发生时间。1)时间排序:首先将所有参与者按照发生事件的时间排序。2)计算生存率:对于每一个独特的时间点,计算生存率。原创 2024-04-10 00:35:08 · 2622 阅读 · 0 评论