POJ 2762 Going from u to v or from v to u?
Targan,拓扑排序
传送门:POJ
传送门:HustOJ
题意
题意是给出一些点,和他们之间的有向边,如果图中任意两点 x,y 之间满足 x 可以到达 y 或者 y 可以到达 x ,就输出“Yes”,否则输出“No”。注意,这里是 x 到达 y ,或者 y 到达 x ,是 或者 不是 而且 。
思路
如果是“而且”的话,很明显的是判断整个图是否为一个强连通分量,那么就简单的多了,但是这个题不行。
处理方法:先用强连通缩点来化简图,然后在DAG上做拓扑排序,如果排序过程中,出现1个以上的点入度同时为0时,那么就不满足条件。换句话说,缩点后应该是一个链,跑spfa最长路长度是点数也行。
代码
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
#define M(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXN=1005;
const int oo=0x3f3f3f3f;
typedef long long LL;
const LL loo=4223372036854775807ll;
typedef long double LB;
const LL mod=1e9+7;
struct Targan
{
//sccno[i]为i所在的dfs块编号
vector<int> G[MAXN];
int pre[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock, scc_cnt;
stack<int> S;
void init()
{
for(int i=0;i<MAXN;i++) G[i].clear();
while(!S.empty()) S.pop();
}
void addedge(int a, int b)
{
G[a].push_back(b);
}
void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u]=min(lowlink[u], lowlink[v]);
}
else if(!sccno[v])
{
lowlink[u]=min(lowlink[u], pre[v]);
}
}
if(lowlink[u]==pre[u])
{
scc_cnt++;
while(true)
{
int x=S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u) break;
}
}
}
void find_scc(int n)
{
dfs_clock=scc_cnt=0;
M(sccno, 0);M(pre, 0);
for(int i=1;i<=n;i++)//注意修改取值范围
{
if(!pre[i]) dfs(i);
}
}
}targan;
vector<int> G_new[MAXN];
int indegree[MAXN];
int main()
{
_;
int T;cin>>T;
while(T--)
{
int n, m;cin>>n>>m;
targan.init();M(indegree, 0);
for(int i=0;i<MAXN;i++) G_new[i].clear();
while(m--)
{
int a, b;cin>>a>>b;
targan.addedge(a, b);
}
targan.find_scc(n);
for(int i=1;i<=n;i++)
{
for(int j=0;j<targan.G[i].size();j++)
{
if(targan.sccno[targan.G[i][j]]!=targan.sccno[i])
{
G_new[targan.sccno[i]].push_back(targan.sccno[targan.G[i][j]]);
indegree[targan.sccno[targan.G[i][j]]]++;
}
}
}
int scc=targan.scc_cnt;
int count=0, now=0;
for(int i=1;i<=scc;i++)
{
if(indegree[i]==0)
{
count++;
now=i;
}
}
bool ff=0;
if(count>1) cout<<"No"<<endl;
else
{
while(n--)
{
int ttt=0;
count=0;
for(int i=0;i<G_new[now].size();i++)
{
int to=G_new[now][i];
indegree[to]--;
if(indegree[to]==0)
{
count++;
ttt=to;
}
}
if(count>1) { cout<<"No"<<endl;ff=1;break; }
now=ttt;
}
if(ff==0) cout<<"Yes"<<endl;
}
}
return 0;
}