哈喽,好久不见,甚是想念,今天给大家分享一下关于数据挖掘建模的流程,这是小编在书里看到的,分享给大家,这样以后做事有头有尾,有据可循。
欢迎关注哔哩哔哩UP主:我家公子Q
目 录
定义目标
数据采集及取样
数据探索
数据预处理
建立数学模型
模型评价
1.定义目标
针对于具体的数据挖掘与建模的工作任务,首先要做的就是明确任务目标,然后将任务目标进行拆分,构建各子目标,目的是为后续工作确定一个良好的方向,避免误入歧途,陷入数据分析的漩涡。
要精准的明确数据挖掘与建模的目标,要求作业人员需要对应用领域具备较为熟悉的掌握,包括应用中的各种知识和应用目标,了解相关领域的情况,熟悉背景知识,弄清用户需求。
一般讲,数据分析与挖掘的目的可以分为三类:
-
把握趋势和模式。比如把握顾客的消费意愿、分析商品的销售模式(啤酒和尿布)等等;
-
预测或分类。比如预测股票价格变动、预测人口变化、预测环境污染等等,分类是指将群体依据多个属性分为多种类别。
-
求最优解。在多种约束条件下,要实现利益最大化或成本最小化,比如资源一定的前提下,实现利润最大化,寻找最优决策。
2.数据采集与取样
2.1 数据采集
数据采集的方式多种多样,一般来讲数据源包括如下几种:端上数据、开放数据、其他平台的数据、物理数据和主观性数据。
端上数据:如果你自己公司具有完整的数据管理系统,那么一般可以根据业务需求可以直接在自身系统里进行数据导出,然后用于后续的数据分析与建模。
开放数据:是指开放给所有人的数据,比如网页的内容数据&#