数据挖掘与建模流程

本文介绍了数据挖掘建模的完整流程,从定义目标到模型评价。内容涵盖数据采集(如端上数据、开放数据等)、数据取样、数据探索、数据预处理(包括数据清洗、集成、变换和规约)、数学模型建立以及模型评价。文中还提及了数据质量分析、异常值处理和数据变换方法等关键步骤。
摘要由CSDN通过智能技术生成

哈喽,好久不见,甚是想念,今天给大家分享一下关于数据挖掘建模的流程,这是小编在书里看到的,分享给大家,这样以后做事有头有尾,有据可循。

欢迎关注哔哩哔哩UP主:我家公子Q

目   录

定义目标

数据采集及取样

数据探索

数据预处理

建立数学模型

模型评价

1.定义目标

针对于具体的数据挖掘与建模的工作任务,首先要做的就是明确任务目标,然后将任务目标进行拆分,构建各子目标,目的是为后续工作确定一个良好的方向,避免误入歧途,陷入数据分析的漩涡。

要精准的明确数据挖掘与建模的目标,要求作业人员需要对应用领域具备较为熟悉的掌握,包括应用中的各种知识和应用目标,了解相关领域的情况,熟悉背景知识,弄清用户需求。

一般讲,数据分析与挖掘的目的可以分为三类:

  1. 把握趋势和模式。比如把握顾客的消费意愿、分析商品的销售模式(啤酒和尿布)等等;

  2. 预测或分类。比如预测股票价格变动、预测人口变化、预测环境污染等等,分类是指将群体依据多个属性分为多种类别。

  3. 求最优解。在多种约束条件下,要实现利益最大化或成本最小化,比如资源一定的前提下,实现利润最大化,寻找最优决策。

2.数据采集与取样

2.1 数据采集

数据采集的方式多种多样,一般来讲数据源包括如下几种:端上数据、开放数据、其他平台的数据、物理数据和主观性数据。

端上数据:如果你自己公司具有完整的数据管理系统,那么一般可以根据业务需求可以直接在自身系统里进行数据导出,然后用于后续的数据分析与建模。

开放数据:是指开放给所有人的数据,比如网页的内容数据&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值