题目地址(215. 数组中的第K个最大元素)

这篇博客介绍了如何解决LeetCode上的215题——数组中的第K个最大元素。提供了两种Python解决方案,一种是利用最小堆,另一种是采用快速选择算法。这两种方法的时间复杂度均为O(n),但空间复杂度不同,最小堆方法为O(n),而快速选择算法为O(1)。
摘要由CSDN通过智能技术生成

题目地址(215. 数组中的第K个最大元素)

https://leetcode.cn/problems/kth-largest-element-in-an-array/

题目描述

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

 

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5


示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

 

提示:

1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104

前置知识

公司

  • 暂无

思路

关键点

代码

  • 语言支持:Python3

Python3 Code:


class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        """
        返回数组中第k个最大的元素
        Args:
            nums(List[int]):数组
            k(int):第k大
        Returns:
            返回数组中第k个最大的元素
        解决方法:
        1. 采用最小堆(大小为k),遍历数组,最后返回堆顶元素
        2. 采用快排的思想 通过交换 知道得到位置为k的元素
        """
        heap = []
        for x in nums:
            # 保证堆的大小 小于等于k
            if len(heap) < k:
                heapq.heappush(heap,x)
            else:
                # 如果堆顶元素小于x 加入x(维护最大的k个元素)
                if heap[0] < x:
                    heapq.heappop(heap)
                    heapq.heappush(heap,x)
        return heap[0]


复杂度分析

令 n 为数组长度。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        """
        返回数组中第k个最大的元素
        Args:
            nums(List[int]):数组
            k(int):第k大
        Returns:
            返回数组中第k个最大的元素
        解决方法:
        1. 采用最小堆(大小为k),遍历数组,最后返回堆顶元素
        2. 采用快排的思想 通过交换 知道得到位置为k的元素
        """
        # 随机选择一个哨兵 放到正确的位置
        k = len(nums)-k
        import random
        def partition(nums,l,r):
            ind = random.randint(l,r)
            nums[l],nums[ind] = nums[ind],nums[l]
            pivot = nums[l]
            i,j = l,r 
            while i<j:
                while i<j and nums[j] >= pivot:
                    j -= 1
                nums[i] = nums[j]

                while i<j and nums[i] <= pivot:
                    i += 1
                nums[j] = nums[i]
            nums[i] = pivot
            return i
        def topKSplit(nums,l,r):
            i = partition(nums,l,r)
            if i == k:
                return nums[i]
            elif i < k:
                return topKSplit(nums,i+1,r)
            else:
                return topKSplit(nums,l,i-1)
        
        return topKSplit(nums,0,len(nums)-1)

复杂度分析

令 n 为数组长度。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值