目录
总览
垃圾收集分为标记阶段和清除阶段
- 标记阶段:引用计数算法、可达性分析算法
- 清除阶段:标记清除算法、复制算法、标记压缩算法、分代收集算法、增量收集算法、分区算法
垃圾标记阶段:对象存活判断
- 在堆里放着几乎所有的 Java 对象实例,在 GC 执行垃圾回收之前,首先需要区分内存中哪些是存活对象,哪些是已经死亡的对象,只有被标记为已经死亡的对象,GC 才会在执行垃圾回收时,释放掉其所占用的内存空间,因此这个过程我们可以称为垃圾标记阶段
- 判断对象存活一般有两种方式:引用计数算法和可达性分析算法
引用计数算法
- 引用计数算法对每个对象保存一个整型的引用计数器属性,用于记录对象被引用的情况
- 对于一个对象 A,只要有任何一个对象引用了 A,则A的引用计数器就 +1;当引用失效时,引用计数器就 -1。只要对象 A 的引用计数器的值为 0,即表示对象 A 不可能再被使用,可进行回收
- 优点:实现简单,垃圾对象便于辨识;判定效率高,回收没有延迟性
- 缺点:
- 它需要单独的字段存储计数器,这样的做法增加了存储空间的开销
- 每次赋值都需要更新计数器,伴随着加法和减法操作,这增加了时间开销
- 引用计数器有一个严重的问题,即无法处理循环引用的情况,这是一条致命缺陷,导致在 Java 的垃圾回收器中没有使用这类算法
循环引用:
- 引用计数算法,是很多语言的资源回收选择,例如因人工智能而更加火热的 Python,它更是同时支持引用计数器和垃圾收集机制
- 具体哪种最优是要看场景的,业界有大规模实践中仅保留引用计数机制,以提高吞吐量的尝试
- Java 并没有选择引用计数算法,是因为其存在一个基本的难题,也就是很难处理循环引用关系
- 那 Python 如何解决循环引用的?
- 手动解除:很好理解,就是在合适的时机,解除引用关系
- 使用弱引用 weakref,weakref 是 python 提供的标准库,旨在解决循环引用
可达性分析算法(根搜索算法、追踪性垃圾收集)
- 相对于引用计数算法而言,可达性分析不仅同样具备实现简单和执行高效等特点,更重要的是该算法可以有效地解决在引用技术算法中循环引用的问题,防止内存泄漏的发生
- 相较于引用计数算法,这里的可达性分析就是 Java、C# 选择的算法。这种类型的垃圾收集通常也叫作追踪性垃圾收集
基本思路:
- 可达性分析算法是以根对象集合 (GC Roots,是一组必须活跃的引用) 为起始点,按照从上至下的方式搜索被根对象集合所连接的目标对象是否可达
- 使用可达性分析算法后,内存中的存活对象都会被根对象集合直接或间接连接着,搜索所走过的路径称为引用链
- 如果目标对象没有任何引用链相连,则是不可达的,就意味着该对象已经死亡,可以标记为垃圾对象
- 在可达性分析算法中,只有能够被根对象集合直接或间接连接的对象才是存活对象
在 Java 语言中,GC Roots 包括以下几类元素
- 虚拟机栈中引用的对象
- 比如:各个线程被调用的方法中使用到的参数、局部变量等
- 本地方法栈内 JNI(通常说的本地方法)引用对象
- 方法区中类静态属性引用的对象
- 比如:Java 类的引用类型静态变量
- 方法区中常量引用的对象
- 比如:字符串常量池里的引用
- 所有被同步锁 synchronized 持有的对象
- Java 虚拟机内部的引用
- 基本数据类型对应的 Class 对象、一些常驻的异常对象(如:NullPointerException、OutOfMemory)、系统类加载器
- 反映Java虚拟机内部情况的 JMXBean、JVMTI 中注册的回调、本地代码缓存等
小技巧:如果一个指针,它保存了堆内存里面的对象,但是自己又不在堆内存里面存放,那它就是一个 Root
- 除了这些固定的 GC Roots 集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。比如:分代收集和局部回收
- 如果只针对Java堆中某一块区域进行垃圾回收,(比如只针对新生代),必须考虑到内存区域是虚拟机自己的实现细节,更不是孤立封闭的,这个区域的对象完全有可能被其他区域的对象所引用,这时候就需要一并将关联的区域对象也加入 GC Roots 集合中考虑,才能保证可达性分析的准确性
注意:
- 如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行。这点不满足的话,分析结果的准确性就无法保证
- 这点也是导致 GC 进行时必须 "STW (Stop The World) " 的一个重要原因,即使是号称(几乎)不会发生停顿的 CMS 收集器中,枚举根节点时也是必须要停顿的
对象的 finalization 机制
-
Java 语言提供了对象终止 (finalization) 机制来允许开发人员提供对象被销毁之前的自定义处理逻辑
-
当垃圾回收器发现没有引用指向一个对象,即:垃圾回收此对象之前,总会先调用这个对象的 finalize() 方法
-
finalize() 方法允许在子类中被重写,用于在对象被回收时进行资源释放。通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件、套接字和数据库连接等
-
永远不要主动调用某个对象的 finalize() 方法,应该交给垃圾回收机制调用,原因:
- 在 finalize() 时可能会导致对象复活
- finalize() 方法的执行时间是没有保障的,它完全由 GC 线程决定,极端情况下,若不发生 GC,则 finalize() 方法将没有执行机会
- 一个糟糕的 finalize() 会严重影响 GC 的性能
-
从功能上来说,finalize() 方法与 C++ 中的析构函数比较相似,但是 Java 采用的是基于垃圾回收器的自动内存管理机制,所以 finalize() 方法在本质上不同于 C++ 中的析构函数
-
由于 finalize() 方法的存在,虚拟机中的对象一般处于三种可能的状态
-
如果从所有的根节点都无法访问到某个对象,说明对象已经不再使用了。一般来说,此对象需要被回收。但事实上,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,一个无法触及的对象有可能在某一个条件下“复活”自己,如果这样,那么对它的回收就是不合理的,为此,定义虚拟机中的对象可能的三种状态:
- 可触及的:从根节点开始,可以到达这个对象
- 可复活的:对象的所有引用都被释放,但是对象有可能在 finalize() 中复活
- 不可触及的:对象的 finalize() 被调用,并且没有复活,那么就会进入不可触及状态。不可触及的对象不可能被复活,因为 finalize() 只会被调用一次
-
以上3种状态中,是由于 finalize() 方法的存在,进行的区分,只有在对象不可触及时才可以被回收
-
判定一个对象是否可回收,至少要经历两次标记过程:
- 1.如果对象 A 到 GC Roots 没有引用链,则进行第一次标记
- 2.进行筛选,判断此对象 A 是否有必要执行 finalize() 方法
- ①如果对象 A 没有重写 finalize() 方法,或者 finalize() 方法已经被虚拟机调用过,则虚拟机视为“没有必要执行”,对象A被判定为不可触及的
- ②如果对象 A 重写了 finalize() 方法,且还未执行过,那么对象 A 会被插入到 F-Queue 队列中,由一个虚拟机自动创建的、低优先级的 Finalizer 线程触发其 finalize() 方法执行
- ③finalize() 方法是对象逃脱死亡的最后机会,稍后 GC 会对 F-Queue 队列中的对象进行第二次标记。如果对象 A 在 finalize() 方法中与引用链上的任何一个对象建立了联系,那么在第二次标记时,对象 A 会被移出“即将回收”集合。之后,对象会再次出现没有引用存在的情况,在这个情况下,finalize() 方法不会被再次调用,对象会直接变成不可触及的状态,也就是说,一个对象的 finalize() 方法只会被调用一次
MAT 与 JProfiler 查看 GC Roots
(1)MAT
- MAT 是 Memory Analyzer 的简称,它是一款功能强大的 Java 堆内存分析器,用于查找内存泄漏以及查看内存消耗情况
- MAT 是基于 Eclipse 开发的,是一款免费的性能分析工具
- 下载地址:MemoryAnalyzer-1.11.0.20201202-win32.win32.x86_64.zip
- 提取码:9mmc
(2)Jprofiler - 下载地址 (9.2版本):jprofiler_windows-x64_9_2_1.exe
- 提取码:325z
垃圾清除阶段
- 当成功区分出内存中存活对象和死亡对象后,GC 接下来的任务就是执行垃圾回收,释放掉无用对象后所占用的内存空间,以便有足够的可用内存空间为新对象分配内存
- 目前在 JVM 中比较常见的三种垃圾收集算法是标记-清除算法、复制算法、标记-压缩算法
标记-清除算法
执行过程:
- 当堆中的有效内存空间被耗尽的时候,就会停止整个程序 (STW),然后进行两项工作,分别是标记和清除
- 标记:Collector 从引用根节点开始遍历,标记所有被引用的对象(非垃圾对象),一般是在对象的 Header 中记录为可达对象
- 清除:Collector 对堆内存从头到尾进行线性的遍历,如果发现某个对象在其Header中没有标记为可达对象,则予以回收
缺点:
- ①效率不算高(三者居中)
- ②在进行 GC 的时候,需要停止整个应用程序 STW,导致用户体验差
- ③这种方式清理出来的空闲内存是不连续的,产生内存碎片,需要维护一个空闲列表
回顾:
- 在对象实例化过程中,为对象分配内存时,有两种分配方式:指针碰撞(内存规整)、空闲列表(内存不规整)
- 指针碰撞:所有用过的内存在一边,空闲的内存在另外一边,中间放着一个指针作为分界点的指示器,分配内存就仅仅是把指针向空闲那边挪动一段与对象大小相等的距离罢了。如果垃圾收集器选择的是 Serial、ParNew 这种基于压缩算法的,虚拟机采用这种分配方式。一般使用带有 compact(整理)过程的收集器时,使用指针碰撞
- 空闲列表:虚拟机维护了一个列表,记录上哪些内存块是可用的,再分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的内容。如使用 CMS 垃圾收集器这种基于标记清除算法的,会使用这种分配方式分配内存
注意:什么是清除?
- 这里的清除并不是真正的置空,而是把需要清除的对象地址保存在空闲地址列表里。下次有新对象需要存放时,判断垃圾的位置空间的大小是否能够存放该对象,如果够就存放
- 例如在做磁盘格式化时,并没有真正将文件删除,可以使用恢复软件恢复,但如果再往里面存放东西,原有的文件将会彻底覆盖,不能恢复
复制算法
背景:
- 为了解决标记-清除算法在垃圾收集效率方面的缺陷
执行过程:
- 将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后清除正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收
- 例如新生代中幸存者 0 区与 1 区就是使用的复制算法
优点:
- ①没有标记和清除过程,实现简单,运行高效
- ②复制过去以后保证空间的连续性,不会出现“碎片”问题,内存是规整的
缺点:
- ①需要两倍的内存空间
- ②对于 G1 这种分拆成为大量 region 的 GC,复制而不是移动(正因为复制操作,栈空间中的引用需要不断改变),意味着 GC 需要维护 region 之间对象引用关系,不管内存占用或者时间开销也不小
注意:
- 如果系统中的存活对象很多,复制算法就不是很理想,因为复制算法需要复制的存活对象占比不能太大,否则需要复制的对象将会很多,极大影响效率
- 也正因为此特点,新生代大部分对象都是垃圾,存活对象占比很小,所以采用复制算法是极其合适的。现在的商业虚拟机都是用复制算法回收新生代。
标记-压缩算法(标记-整理算法)
背景:
- 复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生,但是在老年代,更常见的情况是大部分对象都是存活对象。如果依然使用复制算法,由于存活对象较多,复制的成本也将很高。因此,基于老年代垃圾回收的特性,需要使用其他的算法
- 标记-清除算法的确可以应用在老年代中,但是该算法不仅执行效率低下,而且执行完内存回收后还会产生内存碎片,所以 JVM 的设计者需要在此基础上进行改进。标记-压缩算法由此诞生
执行过程:
- 第一阶段和标记-清除算法一样,从根节点开始标记所有被引用的对象
- 第二阶段将所有的存活对象压缩到内存的一端,按顺序排放
- 之后,清理边界外所有的空间
- 标记-压缩算法的最终效果等同于标记-清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记-清除-压缩算法
- 二者的本质差异在于标记-清除算法是一种非移动式的回收算法,标记-压缩算法是移动式的,是否移动回收后的存活对象是一项优缺点并存的风险决策
- 可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM 只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销,只需使用指针碰撞即可
优点:
- ①消除了标记-清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,JVM 只需要持有一个内存的起始地址即可
- ②消除了复制算法当中,内存减半的高额代价
缺点:
- ①从效率上来说,标记-压缩算法要低于复制算法
- ②移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址
3 种清除算法小结
- 效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存
- 而为了尽量兼顾上面提到的三个指标,标记-压缩算法相对来说更平滑一些,但是效率上不尽人意,他比复制算法多了一个标记阶段,比标记-阶段多了一个整理内存的阶段
- 那么,就没有一个最优算法吗?答案是没有,只有最合适的算法
分代收集算法
- 前面所有这些算法中,并没有一种算法可以完全替代其他算法,它们都具有自己独特的优势和特点。分代手机算法应运而生
- 分代收集算法,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。一般是把 Java 堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,以提高垃圾回收的效率
- 在 Java 程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如 HTTP 请求中的 Session 对象、线程、Socket 连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如 String 对象,由于其不可变特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收
- 目前几乎所有的 GC 都是采用分代收集算法执行垃圾回收的(注意:分代收集算法并不是一个真正的算法,这只是一个思想、说法)
- 在 Hotspot 中,基于分代的概念,GC 所使用的内存回收算法必须结合年轻代和老年代各自的特点
- 年轻代:区域较小,对象生命周期短、存活率低,回收频繁
- 这种情况复制算法的回收整理,速度是最快的。复制算法的效率只和当前存活对象大小有关,因此很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过 Hotspot 中的两个 survivor 的设计得到缓解
- 老年代:区域较大,对象生命周期长、存活率高,回收不频繁
- 这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记-清除或者标记-清除与标记-压缩的混合实现
- Mark(标记)阶段的开销与存活对象的数量成正比
- Sweep(清除)阶段的开销与所管理区域的大小成正相关
- Compact(整理/压缩)阶段的开销与存活对象的数据成正比
- 这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记-清除或者标记-清除与标记-压缩的混合实现
- 年轻代:区域较小,对象生命周期短、存活率低,回收频繁
- 以 Hotspot 中的 CMS 回收器为例,CMS 是基于标记-清除实现的,对于对象的回收效率很高。而对于碎片问题,CMS 采用基于标记-压缩算法的 Serial Old(串行)回收器作为补偿措施:当内存回收不佳(碎片导致的 Concurrent Mode Failure 时),将采用 Serial Old 执行 Full GC 以达到对老年代内存的整理
- 分代的思想被现有的虚拟机广泛使用,几乎所有的垃圾回收器都区分新生代和老年代
增量收集算法
背景:
- 上述现有的算法,在垃圾回收过程中,应用软件将处于一种 STW 的状态。在 STW 状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即堆实时垃圾收集算法的研究导致了增量收集算法的诞生
执行过程:
- 如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成
- 总的来说,增量收集算法的基础仍是传统的标记-清除和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作
缺点:
- 由于在垃圾回收过程中,间断性地还会行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降
分区算法(不同于分代)
- 一般来说,在相同条件下,堆空间越大,一次 GC 时所需要的时间就越长,有关 GC 产生的停顿也越长。为了更好地控制 GC 产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个堆空间,从而减少一次 GC 所产生的停顿
- 分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个堆空间划分成连续的不同小区间 region,每一个小区间都独立使用,独立回收。这种算法的好处是可以控制一次回收多少个小区间