SCI投稿中“Editor invited”和“Editor assigned”区别

文章讲述了稿件在学术期刊投稿过程中的状态变化,从EditorInvited(副编辑受邀)到EditorAssigned(副编辑接手),说明了副编辑在筛选和决定稿件是否进入同行评审阶段的角色。此过程可能因寻找合适的评审员而耗时,之后的状态包括ReviewerInvited和ReviewerAssigned,直至稿件UnderReview(正在评审)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

投稿状态从 editor invited 到 editor assigned,这两种状态有什么区别?assigned还需要持续多久?

状态的进程:

new submission(Submitted)
editor invited
editor assigned

回答:
稿件投至期刊后,会先经过 admin check,再由副编辑(Associate Editor)进行稿件的初步筛选。副编辑可以直接拒稿(desk reject),或者将稿件送至同行评审。

状态“Editor Invited”意味着期刊已经向副编辑发出邀请,等待副编辑接受或拒绝。如果编辑接受,稿件状态将变为“Editor Assigned”。此时,副编辑就能决定稿件能否送至同行评审。稿件处于“With Editor”的状态,那就是还未送至同行评审,副编辑仍然在寻找同行评审员。而寻找的过程可能很漫长,因为同行评审员通常日理万机,婉拒审稿邀请也属正常。

找到潜在的同行评审后,状态将变为“Reviewer Invited”;同行评审一旦接受,状态又会变为“Reviewer Assigned”。稿件送至同行评审,状态将更新至“Under Review”。

见原文:https://www.editage.cn/insights/editor-invited-he-editor-assigned-dou-yi-wei-zhe-gao-jian-hai-mei-song-shen-ma-5089

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值