pytorch 模型部分参数的加载

如果对预训练模型的结构进行了一些改动,在训练的开始前希望加载未改动部分的参数,如将resnet18的第一层卷积层conv1的输入由3通道改为6通道的new_conv1,将分类层fc的1000类输出改为2类输出的new_fc,注意:要改一下名字与原来的不同。

导入模型

myNet=resnet18()
然后就加载模型的参数,参考pytorch 如何加载部分预训练模型

pretrained_dict=torch.load(model_weight)
model_dict=myNet.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
myNet.load_state_dict(model_dict)
也可以通过pretrained model.state_dict()提取需要的模型参数。
--------------------- 
作者:lxx516 
来源:CSDN 
原文:https://blog.csdn.net/LXX516/article/details/80124768 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值