假设n系为地理坐标系,b系为机体坐标系,在地理坐标系中,加速度的输出为:,经过矩阵转换后的值为:。在b系中,加速度的测量值为:,现在和都表示在b系中数值向下的向量,由此,我们对这两个向量做向量积(叉积),得到误差:,利用这个误差来修正矩阵,于是乎,我们的四元数就在这样一个过程中被修正了。但是,由于加速度计无法感知Z轴上的旋转运动,所以还需要用地磁计来进一步补偿。现在我们假设旋转矩阵是经过加速度计校正后的矩阵,当某个确定的向量(b系中)经过这个矩阵旋转之后(到n系),这两个坐标系在XOY平面上重合,只是在Z轴旋转上会存在一个偏航角的误差。下图表示的是经过旋转之后的b系和n系的相对关系。可以明显发现加速度计可以把b系通过四元数法从任意角度拉到与n系水平的位置上,这时,只剩下一个偏航角误差。这也是为什么加速度计误差修正偏航的原因。
加速度计补偿:
最新推荐文章于 2023-09-01 19:01:04 发布