加速度计补偿:

    假设n系为地理坐标系,b系为机体坐标系,在地理坐标系中,加速度的输出为:,经过矩阵转换后的值为:。在b系中,加速度的测量值为:,现在和都表示在b系中数值向下的向量,由此,我们对这两个向量做向量积(叉积),得到误差:,利用这个误差来修正矩阵,于是乎,我们的四元数就在这样一个过程中被修正了。但是,由于加速度计无法感知Z轴上的旋转运动,所以还需要用地磁计来进一步补偿。现在我们假设旋转矩阵是经过加速度计校正后的矩阵,当某个确定的向量(b系中)经过这个矩阵旋转之后(到n系),这两个坐标系在XOY平面上重合,只是在Z轴旋转上会存在一个偏航角的误差。下图表示的是经过旋转之后的b系和n系的相对关系。可以明显发现加速度计可以把b系通过四元数法从任意角度拉到与n系水平的位置上,这时,只剩下一个偏航角误差。这也是为什么加速度计误差修正偏航的原因。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值