Floyd和Dijkstra(Dij)都是SPFA问题的解决方法
其中,
Floyd 是全源最短路, 时间复杂度是O(n³),可以处理负权边
Dij 是单源最短路,时间复杂度是O(nlogn+m) ,不能处理负权边
Floyd:
思想可以简述为:对每一个节点做假设,设有一个节点xk,使得有dis(xi,xj)>dis(xi,xk)+dis(xk,xj),然后进行替换。
所以,需要有三个for循环。
Dij:
思想可以简述为:Disk[n]表示节点start到各个点的最短距离,初始值为∞,Map[n][n]表示节点和节点之间的距离的矩阵图。然后进行循环,每一次找出Disk里的最小值,即离节点start最近的节点(因为不可能存在另外的节点使得更近),然后进行松弛操作,对剩余的节点进行更新,直到所有节点更新完毕。
先给出例题:
1、Floyd
2、Dij
以下为相应的AC代码
1、
#include<bits/stdc++.h>
using namespace std;
int long long n,m,u,v,w,a[1001][1001];
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
a[i][j]=0x3f3f;
if(i==j)a[i][j]=0;
}
}
for(int i=1;i<=m;i++){
cin>>u>>v>>w;
a[u][v]=w;
a[v][u]=w;
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
a[j][i]=a[i][j];
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cout<<a[i][j]<<' ';
}
cout<<endl;
}
}
2、
#include<bits/stdc++.h>
using namespace std;
const int MaxN = 100010, MaxM = 200010;
struct edge
{
int to, dis, next;
};
edge e[MaxM];
int head[MaxN], dis[MaxN], cnt;
bool vis[MaxN];
int n, m, s;
void add( int u, int v, int d )
{
cnt++;
e[cnt].dis = d;
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt;
}
struct node
{
int dis;
int pos;
bool operator <( const node &x )const
{
return x.dis < dis;
}
};
priority_queue<node> q;
void dijkstra()
{
dis[s] = 0;
q.push( ( node ){0, s} );
while( !q.empty() )
{
node tmp = q.top();
q.pop();
int x = tmp.pos, d = tmp.dis;
if( vis[x] )
continue;
vis[x] = true;
for( int i = head[x]; i; i = e[i].next )
{
int y = e[i].to;
if( dis[y] > dis[x] + e[i].dis )
{
dis[y] = dis[x] + e[i].dis;
if( !vis[y] )
{
q.push( ( node ){dis[y], y} );
}
}
}
}
}
int main()
{
cin>>n>>m>>s;
for(int i = 1; i <= n; ++i)dis[i] = 0x7fffffff;
for( int i = 0; i < m; ++i )
{
int u, v, d;
cin>>u>>v>>d;
add( u, v, d );
}
dijkstra();
for( int i = 1; i <= n; i++ )
cout<<dis[i]<<' ';
return 0;
}