Floyd和Dijkstra算法的习后心得

Floyd与Dijkstra算法:最短路径比较与实现,
本文介绍了Floyd全源最短路算法和Dijkstra单源最短路算法,讨论了它们的时间复杂度、处理负权边的能力,并提供了C++代码示例。

Floyd和Dijkstra(Dij)都是SPFA问题的解决方法

其中,

Floyd 是全源最短路, 时间复杂度是O(n³),可以处理负权边

Dij 是单源最短路,时间复杂度是O(nlogn+m)  ,不能处理负权边

Floyd:

思想可以简述为:对每一个节点做假设,设有一个节点xk,使得有dis(xi,xj)>dis(xi,xk)+dis(xk,xj),然后进行替换。

所以,需要有三个for循环。

Dij:

思想可以简述为:Disk[n]表示节点start到各个点的最短距离,初始值为∞,Map[n][n]表示节点和节点之间的距离的矩阵图。然后进行循环,每一次找出Disk里的最小值,即离节点start最近的节点(因为不可能存在另外的节点使得更近),然后进行松弛操作,对剩余的节点进行更新,直到所有节点更新完毕。

先给出例题:

1、Floyd

B3647 【模板】Floyd

2、Dij

P4779 【模板】单源最短路径(标准版)

以下为相应的AC代码

1、

#include<bits/stdc++.h>
using namespace std;
int long long n,m,u,v,w,a[1001][1001];

int main(){
   cin>>n>>m;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            a[i][j]=0x3f3f;
            if(i==j)a[i][j]=0;
            
        }
    }
    for(int i=1;i<=m;i++){
        cin>>u>>v>>w;
        a[u][v]=w;
        a[v][u]=w;
        
    }
    for(int k=1;k<=n;k++){

        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
             
                a[j][i]=a[i][j];
            }
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            cout<<a[i][j]<<' ';
        }
        cout<<endl;
    }
}

2、

#include<bits/stdc++.h>
using namespace std;
const int MaxN = 100010, MaxM = 200010;

struct edge
{
    int to, dis, next;
};

edge e[MaxM];
int head[MaxN], dis[MaxN], cnt;
bool vis[MaxN];
int n, m, s;

void add( int u, int v, int d )
{
    cnt++;
    e[cnt].dis = d;
    e[cnt].to = v;
    e[cnt].next = head[u];
    head[u] = cnt;
}

struct node
{
    int dis;
    int pos;
    bool operator <( const node &x )const
    {
        return x.dis < dis;
    }
};

priority_queue<node> q;


void dijkstra()
{
    dis[s] = 0;
    q.push( ( node ){0, s} );
    while( !q.empty() )
    {
        node tmp = q.top();
        q.pop();
        int x = tmp.pos, d = tmp.dis;
        if( vis[x] )
            continue;
        vis[x] = true;
        for( int i = head[x]; i; i = e[i].next )
        {
            int y = e[i].to;
            if( dis[y] > dis[x] + e[i].dis )
            {
                dis[y] = dis[x] + e[i].dis;
                if( !vis[y] )
                {
                    q.push( ( node ){dis[y], y} );
                }
            }
        }
    }
}


int main()
{
    cin>>n>>m>>s;
    for(int i = 1; i <= n; ++i)dis[i] = 0x7fffffff;
    for( int i = 0; i < m; ++i )
    {
        int u, v, d;
        cin>>u>>v>>d;
        add( u, v, d );
    }
    dijkstra();
    for( int i = 1; i <= n; i++ )
        cout<<dis[i]<<' ';
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值