Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较

Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV)
BellmanFord:适用于权值有负值的图的单源最短路径,并且能够检测负圈,复杂度O(VE)
SPFA:适用于权值有负值,且没有负圈的图的单源最短路径,论文中的复杂度O(kE),k为每个节点进入Queue的次数,且k一般<=2,但此处的复杂度证明是有问题的,其实SPFA的最坏情况应该是O(VE).
Floyd:每对节点之间的最短路径。

先给出结论:
(1)当权值为非负时,用Dijkstra。
(2)当权值有负值,且没有负圈,则用SPFA,SPFA能检测负圈,但是不能输出负圈。
(3)当权值有负值,而且可能存在负圈,则用BellmanFord,能够检测并输出负圈。
(4)SPFA检测负环:当存在一个点入队大于等于V次,则有负环,后面有证明。

本文针对SPFA算法进行分析。


本文解决问题有:
(1)证明SPFA算法最坏复杂度。
(2)为什么存在一个点进入队列V次,就说图有负环。

SPFA是西安交通大学的段凡丁在1994年与《西安交通大学学报》中发表的“关于最短路径的SPFA快速算法”,他在里面说SPFA速度比Dijkstra快,且运行V次的SPFA速度比Floyd速度快,当时我就产生了疑惑:为什么他这么快,在一些经典的书籍中都没有出现过,也没被提及过。
事实证明SPFA算法是有局限的,他不适用于稠密图,对于特别情况的稠密图,SPFA复杂度和BellmanFord时间一样。

最优时间复杂度先不看。

下面来证明SPFA最坏时间复杂度:

思路:
(1)找出SPFA的最最坏到不可能的情况的复杂度为O(VE)。
(2)找出SPFA确实有图,使得跑SPFA的复杂度为O(VE)。


我原本想举一个例子来说明SPFA存在O(VE)的情况,但是确实,最坏情况复杂度是不能用举例说明的,谢谢TianMingBu老师的指出。


证明如果有负环当且仅当存在一个点入队列次数大于等于V次。

对于某个点v,我们已知s到v的松弛路径的边的数量最多为V-1。
我这里说的松弛路径指的是:比如s直接松弛v,这样就有一条松弛路径:s->v 。s松弛a,a松弛v,则s->a->v就是一条松弛路径。

对于所有s到v的松弛路径来说,当松弛路径边的数量相等时,v只入队一次。
比如有松弛路径:
s->a->x->v
s->b->x->v
s->c->z->v,可以看出v只入队一次。
因为s到v的松弛路径的长度最多可以有V-1种变化,所以v最多入队V-1次。

举个例子:

假设有一个图,点集为{s,a,b,c,v},则最多可能的松弛路径有:
s->v
s->a->v
s->b->v
s->c->v
s->a->b->v
s->a->c->v
s->b->c->v
s->a->b->c->v

则松弛路径的边数变化有1,2,3,4,所以v入队为4次,即V-1次。



所以我们可以说每个点最多入队V-1次,因此我们求最坏情况为每个点都入队V-1次,所以此时:


这里举个最坏情况的例子。



当然我们可能考虑,当给定一个V的值,E的值,比如E=2V,怎么给出一个图,使得对此图运行SPFA算法的复杂度为O(VE).
我们这里假定图是连通的,所以E>=V-1。

方法如下:
(1)我们首先将图组成一个链,即如下图所示:



这样就用去了V-1条边。
(2)分别添加v0连向v2,v3,....vk的边,我们要添加的这些边的权值要满足v0先更新vk,v0更新vk-1后vk-1还能更新vk,以此类推,如下图所示:

(3)以vk,vk-1,.....v1的顺序添加权值为正无穷的自环,且不断循环,这个步骤是为了保持v1到vk点的出度保持一致,所以这样做,如下图:


这样我们就构造了一个能够让SPFA跑出O(VE)的图了,原因如下:

因为我们E的值和V的值是不确定的,所以很有可能不能够完成上述的这些构造,我们会分析当没有剩余的边构造上面的步骤(2)时的复杂度(也就是说E<=2V-3,因为第一步连成一个链需要V-1条边,而第二步v0连出去的边需要V-2),和有足够的边能构造上面的图这两种情况。

(1)如果E<=2V-3

因为E<=2V-3,所以E=O(V),所以只要能够求出复杂度是O(V^2),即可说为O(VE).
我们要计算所有点的入队次数和访问的边数。

V0出度为 E-V+2,V0入队1次。
V1出度为1,V1入队为1次。
V2出度为1,V2入队为2次(分别为v0松弛v2,v1松弛v2)。
V3出度为1,V3入队为3次。
....
V(e-v+2)出度为1,入队次数为(E-V+2)次。
后面V(e-v+3),V(e-v+4),.....V(k-1)的出度为1,入队次数为E-V+2次。 这些点的个数为V-(E-V+3)-1 = 2V-E-4。
vk出度为0,vk入队为E-V+2次。

所以总共的访问的边数为:


(2)如果E>2V-3

此时构造图的第二步已经完毕,所以后面剩余的边只需要不断添加自环保持出度平衡即可。

V0出度为V-1,入队1次。
V1到Vk出度为(E-V+2)/(V-1) 或(E-V+2)/(V-1)+1。
v1到vk的入队次数分别为1,2,3,.....V-1。

所以总共访问边数为:




package C24;

import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

import C22.GraphFactory;
import C22.Pair;
import C22.Weighted_Adjacent_List;

public class SPFA {
	public int[] spfa(Weighted_Adjacent_List G,String s){
		return spfa(G,G.getVertexIndex(s));
	}
	public int[] spfa(Weighted_Adjacent_List G,int s){
		//1.创建所要的数据结构
		int size = G.getSize();
		int d[] = new int[size];	//距离估计
		for(int i=0;i<d.length;i++){
			d[i] = Integer.MAX_VALUE;
		}
		List<Integer> Q = new LinkedList<Integer>();
		boolean is_in_queue[] = new boolean[size];	//是否在队列中
		for(int i=0;i<is_in_queue.length;i++){
			is_in_queue[i] = false;
		}
		//2.初始化
		d[s] = 0;
		Q.add(s);
		is_in_queue[s] = true;
		//3.核心
		while(!Q.isEmpty()){
			int u = Q.remove(0);
			is_in_queue[u] = false;
			List<Pair> list = G.getListByVertexIndex(u);
			Iterator<Pair> iter = list.iterator();
			while(iter.hasNext()){
				Pair vstr = iter.next();
				int v = G.getVertexIndex(vstr.end);
				if(d[v]>d[u]+vstr.weight){
					d[v] = d[u] + vstr.weight;
					if(!is_in_queue[v]){	//如果松弛的点不在队列中,则加入队列;如果在队列中,则不动
						Q.add(v);
						is_in_queue[v] = true;
					}
				}
			}
		}
		return d;
	}
	public static void main(String[] args) throws Exception {
		SPFA spfa_alg = new SPFA();
		Weighted_Adjacent_List g = GraphFactory.getWeightedAdjacentListInstance("input\\weighted_graph.txt");
		int[] d = spfa_alg.spfa(g,"s");
		for(int i=0;i<d.length;i++){
			System.out.println(g.getVertexValue(i)+":"+d[i]);
		}
	}
}



  • 27
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
本科参加ACM竞赛的过程中积累下来的一部分算法模板,和自己在PKU上面做的一部分题目。 模板目录结构: 目录: 动态规划 O(n^2)的最长上升子序列 nlogn最长上升子序列 高精度 计算几何 Graham扫描法 两线段交点 凸多边形面积 半平面交 计算几何库 数据结构 闭散列法整数hash 开散列法整数hash 字符串hash 堆 二维树状数组 Trie树 二叉查找树 线段树 RMQ LCA+RMQ SB-Tree 数论 生成紧凑素数表 分解质因子 最大公约数 a^b mod n 扩张欧几里德算法 素数表质因子分解 Stirling公式 中国剩余定理 欧拉数(递推法) 欧拉数(公式法) 十进制转负进制 归并排序求逆序数 Pell方程 Catalan数,100以内 欧拉函数讲解 组合计数 组合数计算(double) 组合数计算(高精度) r-组合生成算法 r-排列生成算法 r-错位排列生成算法 图论 传递闭包 欧拉回路判定 有向图欧拉路径 二分图最大匹配 匈牙利算法 二分图最大匹配 HK算法 二分图最大权匹配 KM算法 割边 强连通分量 缩点 Kosaraju算法 最大团 最小树形图 无向图全局最小割 stoer-wagner O(n^3) 最短路径优先算法 SPFA 网络流 最大流:Ford&Fulkerson算法 最大流:Dinic算法 最大流:ek算法 最大流:dsp算法 最大流:hlpp算法 最小费用最大流:bellman_ford找增广路 最小费用最大流:ssp算法 字符串 KMP 通配符匹配 最小表示法 后缀数组 倍增算法 基于多串匹配的有限状态自动机 未分类 归并排序 星期几的计算 N皇后构造法 几个常用的位操作 最大最小定理总结 0/1分数规划总结 (by yxysdcl 2008/11/19) 代码目录结构: 目录: 动态规划 钉子和小球 Hash+dp分词(摩尔电码) 火柴棒等式 DAG图DP,老鼠打洞 最短子路径 最少回文数 矩阵链乘 树形DP 最少的石子填到根节点 树种删除最少的边使刚好剩下P个点 树的支配集 最优连通子集 带背包的树形DP 最小顶点覆盖,判唯一 用最少的点覆盖所有的边 DAG上的记忆化树形DP,博弈 有限状态自动机+树形DP 状态压缩DP 炮兵阵地 Help Bob,买匹萨 匹配数量 堆筛子 全排列式状态DP 计算几何 多边形地图染色 数据结构 Hash 枚举+hash,方程解数 点集对称中心 字符hash,统计出现最多的单词 类此The Happy worm 数据结构 树状数组 覆盖某区间数量统计 Cows Stars 两个树桩数组 二维树状数组 数据结构 双端队列 Sliding Window 数据结构 线段树 Cows 线段染色 排队问题 第K大的数 离散化+线段树 灯光投影 网络赛取连续子序列问题 线段树+树状数组+并查集,转化为排队问题 离散化 离散化矩形切割,矩形覆盖面积统计 覆盖矩形周长统计 离散化矩形切割 灯光投影 搜索 导弹 Bfs+hash状态的抽象,模关系 Bfs变形,钥匙与门 双向广搜 迭代加深 优先队列搜索,过最少的门救人,建图 A*搜索 图论 差分约束 Intervals bellman_ford Intervals SPFA 出纳员的雇佣 不等式组 图论 割边 图染色 拓扑 树 欧拉路径) 割点+统计删除后剩下多少连通图 删除一个点使得连通分量最多 图染色 拓扑排序全部序列 最大生成树 有向图欧拉路径 字典序最小的有向图欧拉路径 图论 匹配 完美匹配FBI Koning定理,泥地 二分图最大独立集 通讯站天线覆盖 二分图拆分后匹配 二分图某边唯一匹配 最小权匹配 海上矿工 floyd预处理 最大权匹配,需要非完全图转完全图 传递闭包+最小路径覆盖 可以重复经过点 图论 网络流 Adding-the-maximum-flow arc 增量网络流 区间枚举,猴子语言+网络流 最小费用最大流 最大流最小割定理 摧毁伞兵 最大流最小割定理 泥地 图论 最短路径 Dijkstra+heap 昂贵的聘礼 最短路变形 树中任意点对最短路和 Bellman_ford 货率 限制长度最短路,负环判连通,点权变边权,改变正负号 表达式求值 算法优先算法求表达式的值 词法分析与算法优先算法,集合运算:差集,并集,交集 矩阵乘法 线段覆盖数量 矩阵构造,nlogn矩阵乘法 2-SAT XOR
Algorithms   本次README修订为算法仓库Algorithms的第100次commit,首先我们庆祝自2016年8月4日本仓库建立以来Dev-XYS在算法学习方面取得的显著进步!   这里有各种算法的C++代码,任何人可以在自己的任何程序中使用,欢迎大家指出代码中的错误以及有待改进的地方。   本仓库内所有代码的授权方式为Unlicense,大家如果使用我的代码开发自己的软件挣了大钱,或是参考我的代码在NOI中得了金牌,我都会很高兴的。使用这里的代码之后,你可以自主选择是否公开源代码。总而言之,你可以把这里的代码当作你自己写的一样,无论怎样使用都是被允许的。但是,我不对本仓库内代码的正确性负责。大家要是使用我的代码开发软件而导致程序崩溃,或是参考我的代码在考试时出错,请不要向我抱怨。如果你愿意,遇到问题可以在Issues中提出来,我们共同解决。我们不赞成Pull Request,因为本仓库主要储存作者已经学习的算法,全部代码均由作者本人负责维护与更新。   以下索引提供了本仓库内算法的中文名,方便大家查找。更新可能有很长时间的延迟,不保证所有算法的名称都在列表中出现。 Index --------------------------Contents-------------------------- --------------------------FileName-------------------------- AC自动机 Aho-Corasick-Automation 单源最短路径(SPFABellman-Ford(Queue-Optimised) 单源最短路径(Bellman-Ford) Bellman-Ford 使用Edmonds-Karp进行二分图匹配 Bigrpah-Matching(Edmonds-Karp) 普通的二叉搜索树 Binary-Search-Tree 广度优先搜索 Breadth-First-Search 冒泡排序 Bubble-Sort 桶排序 Bucket-Sort 组合数的递推求解 Combination(Recursion) 枚举组合 Combination 基本的复数类 Complex-Number 割点 Cut-Vertex 深度优先搜索 Depth-First-Search 堆优化的Dijkstra算法 Dijkstra(Heap-Optimised) 并查集 Disjoint-Set-Union 最大流Edmonds-Karp算法 Edmonds-Karp 欧拉函数 Euler's-Totient-Function 有向图的欧拉回路 Eulerian-Tour(Digraph) 拓展欧几里得算法 Extended-Euclid 简单的快速幂 Fast-Exponentiation 树状数组 Fenwick-Tree 所有结点对之间的最短路径(Floyd) Floyd-Warshall 凸包算法(Graham扫描法) Graham-Scan 辗转相除法求最大公约数 Greatest-Common-Divisor 堆排序 Heap-Sort ISAP算法 Improved-Shortest-Augmenting-Path(Naive) 插入排序 Insertion-Sort 字符串匹配(KMP) Knuth-Morris-Pratt 最小生成树(Kruskal) Kruskal 最近公共祖先(Tarjan) Least-Common-Ancestor(Tarjan) 使用后缀数组求解最长公共子串 Longest-Common-Substring 最长上升子序列(n·log(n)) Longest-Increasing-Subsequence(n·log(n)) 倍增法求最近公共祖先 Lowest-Common-Ancestor(Doubling) 朴素的矩阵乘法 Matrix-Multiplication(Naive) 归并排序 Merge-Sort 最小堆 Min-Heap 乘法逆元 Modular-Multiplicative-Inverse 仅支持单点修改的可持久化线段树(维护区间和值) Persistent-Segment-Tree(Sum) 试除法素数测试 Prime-Check(Naive) 线性的素数筛法 Prime-Sieve(Linear) 队列的基本操作 Queue 快速排序的优化版本 Quick-Sort(Extra-Optimised) 快速排序的随机化版本 Quick-Sort(Randomized) 快速排序 Quick-Sort 使用向量叉积判断两个有向线段的时针关系 Segment-Direction 线段树维护区间最大值 Segment-Tree(Maximum) 线段树维护区间最小值 Segment-Tree(Minimum) 线段树维护区间和值 Segment-Tree(Sum) 普通的选择算法 Selection Eratosthenes素数筛法 Sieve-of-Erotosthenes 指针版的单向链表 Singly-Linked-List(Pointer) 跳表 Skip-List ST表 Sparse-Table 伸展树 Splay 博弈论SG函数 Sprague-Grundy 栈的基本操作 Stack 递推法求解无符号第一类斯特林数 Stirling-Number(Cycle,Unsigned,Recursion) 递推法求解第二类斯特林数 Stirling-Number(Subset,Recursion) 倍增法求解后缀数组 Suffix-Array(Doubling) 倍增法求解后缀数组(附带Height数组) Suffix-Array-with-Height(Doubling) 使用Tarjan算法求解强连通分量 Tarjan(Strongly-Connected-Components) 数组版的字典树 Trie(Array) 指针版的字典树 Trie(Pointer)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiazdong

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值