智能车联网(C-IoV)的安全、隐私与信任问题剖析
1. 车联网安全概述
在车联网(C-IoV)环境下,车辆决策依赖远程基础设施存在安全风险,因此必须尽量减少远程基础设施(如云端)的攻击面。整体而言,攻击面存在于车辆内部、车辆连接之间以及车辆交互之外。从顶层视角看,所有潜在网络攻击和数据泄露的攻击面可通过三层图来呈现,其中车辆内的电子控制单元(ECUs)、车辆间通信与云端、与云端连接的各方都被视为潜在攻击面。
1.1 信任在车联网框架中的重要性
信任在不同领域有不同含义,在网络领域,信任意味着可靠的多方关系。在车联网中,信任概念复杂,依赖于数据的准确性、及时性、可访问性和互操作性。随着车联网引入大量数据,信任变得更加多样化。
在智能城市交通系统内外日益复杂的连接环境下,信任比以往任何时候都更加重要。车联网旨在通过感知、理解和编程将现实物理世界与数字控制相连接,但这也可能导致信息丢失和设备或主机失控。任何信息安全漏洞都可能危及道路上通勤者的生命和个人生活中的社会损失。为实现新兴交通系统的绝对安全,并在网络节点、对等方和云端之间交换可靠和真实的信息,一个无攻击且可信的环境至关重要。
在车联网中,信任确保每次与对等方通信都能得到预期结果,但结果可能是积极的,也可能是被黑客攻击或欺骗。当在远程基础设施(包括云端、边缘和雾节点)上处理应用数据时,确保远程节点未被破坏并严格遵守服务使用协议非常重要。例如,一辆车使用目标检测应用对远距离物体进行计数,由于本地处理能力不足和软实时要求,车辆将图像和目标检测代码卸载到远程节点。如果远程节点诚实且未被破坏,它会使用车辆提供的输入图像正确执行代码,并返回图像中找到的物体数量;但如果远程节点被破坏,它可能不进行任何计算就返回随机结果,这会影响目标检测应用的性能和响应能力,对于安全关键应用,这种攻击可能导致灾难性后果。
在车联网的演进框架中,存在多层次交互。例如,道路层面的交互中,车辆与其他车辆、传感器、行人、路边单元和智能城市实体进行无线通信;多个云服务提供商(CSPs)之间的交互与合作,因为单一云可能无法为所有设备提供令人满意的服务质量,这可能是由于性能、云部署成本高或国家政策等原因。此外,在与其他智能城市服务协调时,交通云需要与目标服务云进行交互以启用相关服务。确保所有这些不可信方之间的信任是车联网面临的一个极具挑战性的问题。
1.2 不同车联网系统架构对比
| 系统架构 | 基础技术 | 安全担忧 | 安全威胁 |
|---|---|---|---|
| 智能交通系统(ITS) | 传感器、应用模式 | 数据有效性、隐私、开放通信链路、行为隐私、车辆身份和责任泄露 | 网络中数据错误、窃听、回复攻击、位置隐私攻击、消息操纵、Sybil攻击 |
| 协作式智能交通系统(C-ITS) | 边缘/雾技术、Wi-Fi、3G/4G、VANET | 信息修改、数据泄露、消息操纵、认证、访问控制 | 欺骗、重播攻击、窃听、拒绝服务、数据操纵、否认、身份欺骗 |
| 车联网(IoV) | 互联网云 | 访问、信任、动态供应、可用性、多租户、跨境数据流动 | 数据泄露和丢失、恶意内部人员、身份盗窃、服务劫持、不安全接口 |
| 认知车联网(C-IoV) | 机器学习、深度学习、神经学习 | 规避攻击、数据投毒、模型窃取、影响攻击 | 数据泄露、汽车事故、对恶意软件不知情 |
2. 认知引擎在传统安全问题中的潜在对策
车联网演进框架由于与其他部门的多方面连接,可能面临比前代更严重的安全问题,这会为系统引入额外的攻击面。然而,新兴车联网框架中的认知引擎相关技术可以提高系统的整体安全性。车联网框架存在许多安全问题,主要源于网络层面。认知技术可在以下四个方面改善车联网现有的安全问题:
2.1 认证
认证通常允许网络设备区分外部攻击和源节点,是解决基于身份攻击(如欺骗和Sybil攻击)的重要安全特性。理想情况下,认证过程从比较物理层特征与发射器特征开始,以确定传输的认证。这可以通过将特征与基于分类模型准确性构建的特定阈值进行比较来实现。随着时间的推移,一系列基于机器学习的技术,如强化学习技术(如Q学习、Dyna - Q和深度Q网络(DQN))已被证明可以选择所需的阈值以获得认证准确性。此外,卷积神经网络(CNN)模型有望从实验车辆的原始数据中提取驾驶员行为特征,实现更高准确性的驾驶员识别,可潜在用于认证。
2.2 访问控制和验证
访问控制可防止未经授权的用户访问网络内的资源。新兴交通网络本质上是异构的,为这样的网络设计有效的访问控制机制具有挑战性。然而,一些基于机器学习的访问控制机制,如支持向量机(SVMs)、K近邻(K - NNs)和最近邻(NNs),已经提出了可以在车联网中实现访问控制支持的最优解决方案。
在演进范式中,可以集成可验证计算框架,允许车辆或其他第三方独立验证数据的正确性。新兴的加密实现(如ZKSnarks)提供了可行的解决方案。此外,基于运行时分析的新型可验证计算系统正在引入,例如可验证Python(vPython)是一个新的可验证计算框架,可帮助应用开发者从远程节点获取其已正确执行计算的证明。
2.3 安全网络卸载
安全卸载允许车联网中的网络设备使用外部存储和云计算资源来处理需要大量计算能力的特定任务。Q学习作为一种机器学习工具和认知引擎的特性,可用于识别认证的最佳阈值,也可用于确定最佳的数据卸载率,以防范特定攻击(如干扰和欺骗攻击)。
2.4 恶意软件检测
基于云的车联网容易受到各种恶意软件(如病毒、蠕虫和特洛伊木马)的攻击。基于机器学习的恶意软件检测技术,如监督学习技术(如朴素贝叶斯、神经网络或K近邻),可用于标记进入车联网的流量,并构建分类模型以检测网络入侵。
认知引擎还可用于持续的软件更新。当代软件框架和操作系统容易出现漏洞,软件社区不断描述潜在的漏洞并发布补丁以减少损害。运行过时的软件框架和操作系统会增加攻击面,通过采用良好的软件和安全实践可以减少这种风险。此外,当依赖第三方进行计算和存储时,验证其操作以确保正确性和安全性非常重要。通过在认知框架中包含可验证的计算和存储解决方案,应用开发者可以从远程基础设施获得保证。同时,具有强大集中认知模型的分层云模型可以适应新兴的联邦学习模型。在联邦学习中,每辆车无需将完整数据共享到中央服务器进行学习,而是在本地运行学习算法,仅将更新后的模型参数与远程服务器共享。这种模型有助于车辆保留敏感数据,同时为学习过程做出贡献,从而提高安全性和隐私性。
最后,基于云的车联网框架本质上是集中式架构,存在单点故障的风险。恶意攻击者可能会破坏为车辆服务的基础设施。由于车联网是分散且本质上是去中心化的,涉及区块链和分布式账本技术的去中心化框架可以帮助应用开发者将利益相关者纳入应用过程,从而防止单点故障并提供更高的透明度。认知引擎在实现这种在集中化下应用去中心化解决方案的层次结构中可以发挥重要作用。
2.5 认知引擎工作流程 mermaid 图
graph LR
A[车联网数据] --> B[认证]
A --> C[访问控制和验证]
A --> D[安全网络卸载]
A --> E[恶意软件检测]
B --> F[数据处理]
C --> F
D --> F
E --> F
F --> G[认知引擎决策]
G --> H[反馈与更新]
H --> B
H --> C
H --> D
H --> E
这个流程图展示了认知引擎在车联网中的工作流程,从车联网数据输入开始,经过认证、访问控制和验证、安全网络卸载、恶意软件检测等步骤进行数据处理,然后由认知引擎做出决策,最后进行反馈与更新,形成一个闭环系统,不断优化车联网的安全性。
3. 车联网(C-IoV)中的安全与隐私问题
3.1 系统漏洞与攻击风险
在车联网(C - IoV)的综合网络环境下,系统漏洞是导致成功攻击的常见原因。攻击者可以通过注入恶意软件或凭借对系统的充分了解来入侵目标系统。交通系统中的漏洞可能源于系统设计的薄弱环节或软件缺陷,这些漏洞存在于车辆网络的各个层级,包括车内、车际以及车外网络。
在自主车内网络方面,许多研究指出内部总线存在局限性和弱点,这可能使系统遭受未经授权的访问。对于车际网络,围绕专用短程通信(DSRC,IEEE 802.11p)存在诸多漏洞。例如,有研究通过漏洞测试发现,全向天线的技术缺陷可能引发干扰攻击;还有研究表明,在 DSRC 中交换信标被破坏时会出现干扰拒绝服务(DoS)攻击。此外,作为 IEEE 802.11p 替代方案的 IEEE 802.11 - OCB 由于在基本服务集之外运行,不提供加密保护,这也暗示了潜在的不安全因素。在蜂窝网络中,存在导致基于 IP 的攻击、窃听、欺骗、分布式拒绝服务(DDoS)攻击等的主要漏洞。全球导航卫星系统(GNSS)作为车际通信系统的重要组成部分,也存在系统、传播和干扰相关的漏洞,可能导致服务干扰和网络欺骗。基于云的车外网络同样容易受到多种漏洞的影响,这对新兴的智能交通系统构成潜在威胁。
3.2 隐私问题
车辆会产生大量数据,其中一些数据具有敏感性,如个人健康相关数据、车辆注册信息、车辆状况或位置数据,以及附近对等车辆或云端的数据。因此,身份隐私和位置隐私等问题需要得到高度关注。
3.3 认知引擎云相关的安全问题
3.3.1 云计算相关问题
认知引擎依赖云来存储数据,以便车辆学习模式等,但云计算存在一些独特的安全问题,这些问题也影响到车联网:
1.
跨境数据流动/数据扩散
:C - IoV 用户可能面临特定公司在未经授权的情况下访问存储数据的问题,这使得数据完整性和隐私成为用户严重关切的问题。
2.
访问问题
:由于数据存储用于训练和认知技术的其他用途,攻击者可能入侵存储用户数据的云存储,导致用户数据泄露。
3.
多租户问题
:云在多个不同的机器上运行,这使车联网数据的完整性面临风险,也使云更容易受到对云基础设施的攻击。
4.
信任问题
:C - IoV 模型存储了来自许多不同设备(如手机和摄像头)的大量用户信息,用户对系统缺乏完全信任,担心系统崩溃导致数据丢失。
3.3.2 学习算法相关问题
认知引擎中的机器学习/深度学习算法也存在安全问题,可能导致分类模型对特定数据的误判或学习到错误的数据。主要有以下三类问题:
1.
影响攻击
:通过改变或破坏分类阶段来影响分类器模型。
2.
安全违规
:包括提供假阴性结果,使敌对输入进入系统;或提供假阳性结果,拒绝良性输入访问系统。
3.
特异性攻击
:允许特定的入侵或破坏,可能导致训练模型出现混乱。
具体的安全问题包括:
1.
规避攻击
:攻击者操纵恶意样本以逃避检测,这种攻击对使用机器学习并连接到互联网的技术非常危险,因为它旨在绕过分类器,使攻击者能够在不被检测的情况下潜入网络。
2.
数据投毒
:与规避攻击不同,数据投毒是通过向分类器模型提供受污染的训练数据来改变机器学习的训练数据,从而影响分类器对好坏输入的判断。这可能导致车联网做出不利的决策,例如改变车辆间安全距离的判断。
3.
模型窃取技术
:虽然这种情况发生的可能性较小,但仍然是一个严重的问题。攻击者试图恢复用于训练的模型或信息,这些训练数据可能包含用户手机上的信息、驾驶位置、医疗状况等敏感数据。
此外,由于车联网是人工智能的先进和广泛应用,机器学习/深度学习的学习模式可能比较脆弱。模型基于类似自然数据进行工作,如果使用与其他训练数据略有不同的独特数据,可能导致模型完全失效,即使没有攻击者,也可能出现对训练数据的误判。例如,用胶带覆盖“停车”标志,人工智能系统可能无法正确反应,继续行驶而不停车。
3.4 认知引擎安全问题总结表格
| 问题类型 | 具体问题 | 影响 |
|---|---|---|
| 云计算问题 | 跨境数据流动/数据扩散 | 数据完整性和隐私受威胁 |
| 访问问题 | 用户数据可能被泄露 | |
| 多租户问题 | 数据完整性面临风险,云易受攻击 | |
| 信任问题 | 用户担心数据丢失 | |
| 学习算法问题 | 影响攻击 | 影响分类器模型 |
| 安全违规 | 系统可能接受敌对输入或拒绝良性输入 | |
| 特异性攻击 | 训练模型可能出现混乱 | |
| 规避攻击 | 攻击者可绕过检测进入网络 | |
| 数据投毒 | 影响分类器对输入的判断,导致不利决策 | |
| 模型窃取技术 | 敏感训练数据可能被窃取 |
3.5 车联网攻击与防护流程 mermaid 图
graph LR
A[攻击者] --> B[发现系统漏洞]
B --> C{选择攻击方式}
C -->|规避攻击| D[操纵恶意样本]
C -->|数据投毒| E[提供受污染训练数据]
C -->|模型窃取| F[恢复训练模型信息]
D --> G[绕过检测进入网络]
E --> H[影响分类器判断]
F --> I[窃取敏感数据]
J[认知引擎防护机制] --> K[认证]
J --> L[访问控制和验证]
J --> M[安全网络卸载]
J --> N[恶意软件检测]
K --> O[阻止非法访问]
L --> O
M --> O
N --> O
O --> P[保障车联网安全]
这个流程图展示了车联网中攻击者的攻击流程和认知引擎的防护流程。攻击者先发现系统漏洞,然后选择不同的攻击方式,如规避攻击、数据投毒和模型窃取,以达到不同的攻击目的。而认知引擎通过认证、访问控制和验证、安全网络卸载、恶意软件检测等防护机制,阻止非法访问,保障车联网的安全。
综上所述,车联网(C - IoV)在带来便利的同时,也面临着诸多安全、隐私和信任方面的挑战。通过认知引擎的多种技术手段,可以在一定程度上应对这些挑战,但仍需要不断地研究和改进,以确保车联网系统的安全可靠运行。
车联网安全与认知引擎应用
4291

被折叠的 条评论
为什么被折叠?



